Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-14T18:31:36.394Z Has data issue: false hasContentIssue false

Assay-guided isolation of naturally-occurring neuroactive substances1

Published online by Cambridge University Press:  09 July 2009

Henry McIlwain*
Affiliation:
Department of Biochemistry, St Thomas' Hospital Medical School, London
*
2 Address for correspondence: Dr H. Mcllwain, Department of Biochemistry, St Thomas' Hospital Medical School, Lambeth Palace Road, London SEI 7EH.

Synopsis

Ways in which chemical techniques could be applied to the understanding of neural systems, their functioning and their disorders were devised only gradually during the present century. In a particularly successful procedure, now termed assay-guided isolation, neural defects were made good by means of tissue-extracts and the restoration of function was established as an assay-system to guide the chemical separation and identification of the active tissue constituent. Thiamin was so isolated, using an experimental polyneuritis assay; subsequent instances among other metabolites, hormones, neurotransmitters and nerve growth factors are recounted. Procedures of assay-guided characterization ensured that links were retained between specific, sparsely-occurring substances and chosen aspects of their biological roles while their chemical nature was first explored and then established. The procedures discouraged the too-facile postulating of hypothetical molecules and contributed to the distinctiveness of neurochemistry as a subject within the neurosciences.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

This paper was presented in brief at the Colloquium on the History of Neurochemistry at the 9th (Vancouver) meeting of the International Society for Neurochemistry, 1983.

References

Arendt, J., Symons, A. M., Laud, C. A. & Pryde, S. J. (1983). Melatonin can induce early onset of the breeding season in ewes. Journal of Endocrinology 97, 395400.CrossRefGoogle ScholarPubMed
Banga, I., Ochoa, S. & Peters, R. A. (1939). Pyruvate oxidation in brain. VI. The active form of vitamin B1. Biochemical Journal 33, 11091121.CrossRefGoogle Scholar
Bazemore, A. W., Elliott, K. A. C. & Florey, E. (1957). Isolation of Factor I. Journal of Neurochemistry 1, 334339.CrossRefGoogle Scholar
Braddon, L. W. (1907). The Cause and Prevention of Beri-beri. Rebman: London.Google Scholar
Cohen, S. (1959). Purification and metabolic effects of a nerve growth-promoting protein from snake-venom. Journal of Biological Chemistry 234, 11291137.CrossRefGoogle ScholarPubMed
Coward, K. H. (1938). The Biological Standardization of the Vitamins. Baillière, Tindall and Cox: London.Google Scholar
Curie, E. (1938). Madame Curie (transl. Sheean, V.). Heinemann: London.Google Scholar
Eijkman, C. (1906). Ernährungspolyneuritis. Archiv der Hygiene 58, 150.Google Scholar
Elliott, K. A. C. & Florey, E. (1956). Factor I. Inhibitory factor from brain. Journal of Neurochemistry 1, 181191.CrossRefGoogle ScholarPubMed
Elvehjem, C. A., Madden, R. J., Strong, F. M. & Woolley, D. W. (1938). Isolation and identification of anti-blacktongue factor. Journal of Biological Chemistry 123, 137149.CrossRefGoogle Scholar
Fruton, J. S. (1976). The emergence of biochemistry. Science 192, 327334.CrossRefGoogle ScholarPubMed
Funk, C. (1911). The chemical nature of the substance which cures polyneuritis in birds induced by a diet of polished rice. Journal of Physiology 43, 395400.CrossRefGoogle ScholarPubMed
Funk, C. (19121913). The preparation from yeast and certain foodstuffs of the substance the deficiency of which in diet occasions polyneuritis in birds. Journal of Physiology 45, 7581.CrossRefGoogle ScholarPubMed
Funk, C. (1913, 1922). The Vitamines (transl. Dubin, H. E.). Williams & Wilkins: Baltimore.Google Scholar
Gavrilescu, N. & Peters, R. A. (1931). On the function of torulin. An in vitro effect of antineuritic vitamin concentrates. Biochemical Journal 25, 21502161.CrossRefGoogle Scholar
Gavrilescu, N., Meikeljohn, A. P., Passmore, R. & Peters, R. A. (1932). Carbohydrate metabolism in birds. The site of the biochemical lesion in avian polyneuritis. Proceedings of the Royal Society Series B 110, 431447.Google Scholar
Goldberger, J. (1922). The relation of diet to pellagra. Journal of the American Medical Association 78, 16761680.Google Scholar
Grijns, G. (1911). On polyneuritis gallinarum. In Prof. Dr. G. Grijns' Researches on Vitamins, 1900–1911, pp. 159177. Gorinchem: Noorduyn en Zoon (1935).Google Scholar
Hopkins, F. G. (1906). The analyst and the medical man. The Analyst 31, 385.CrossRefGoogle Scholar
Hopkins, F. G. (1912). Feeding experiments illustrating the importance of accessory factors in normal dietaries. Journal of Physiology 44, 425460.CrossRefGoogle ScholarPubMed
Hughes, J. (1975). Isolation of an endogenous compound from the brain with pharmacological properties similar to morphine. Brain Research 88, 295308.CrossRefGoogle ScholarPubMed
Huxley, T. H. (1874). On the hypothesis that animals are automata. In Methods and Results, pp. 199250. Macmillan: London.Google Scholar
James, W. (1890). The Principles of Psychology. Holt: New York.Google Scholar
Kinnersley, H. W. & Peters, R. A. (1929). Observations upon carbohydrate metabolism in birds. I. The relation between the lactic acid content of the brain and the symptoms of opisthotonus in rice-fed pigeons. Biochemical Journal 23, 11261136.CrossRefGoogle Scholar
Kinnersley, H. W. & Peters, R. A. (1930). Carbohydrate metabolism in birds. II. Brain localization of lactic acidosis in avitaminosis B1, and its relation to the origin of symptoms. Biochemical Journal 24, 711722.CrossRefGoogle Scholar
Kinnersley, H. W., Peters, R. A. & Reader, V. (1928). Antineuritic yeast concentrates. III. The curative pigeon test: a critique. Biochemical Journal 22, 276291.CrossRefGoogle Scholar
Kinnersley, H. W., Peters, R. A. & Reader, V. (1930). A quantitative comparison of the curative activity of torulin (vitamin B1) upon the adult pigeon and the adult rat. Biochemical Journal 24, 18201823.CrossRefGoogle Scholar
Kosterlitz, H. W. (1976). Opioids and Endogenous Opioid Peptides. Elsevier/N. Holland: Amsterdam.Google Scholar
Kosterlitz, H. W. & Hughes, J. (1975). Some thoughts on the significance of enkephalin, the endogenous ligand. Life Sciences 17, 9196.CrossRefGoogle ScholarPubMed
Lerner, A. B., Case, J. D., Takahashi, Y., Lee, T. H. & Mori, W. (1958). Isolation of melatonin, the pineal gland factor that lightens melanocytes. Journal of the American Chemical Society 80, 2587.CrossRefGoogle Scholar
Lerner, A. B., Case, J. D. & Takahashi, Y. (1960). Isolation of melatonin and 5-methoxyindole-3-acetic acid. Journal of Biological Chemistry 235, 19921997.CrossRefGoogle ScholarPubMed
Lunin, N. (1881). Über die Bedeutung der anorganischen Salze fürdie Ernährung des Tieres. Hoppe-Seyle Zeitschrift für Physiologischen Chemie 5, 3139.Google Scholar
McCollum, E. V. (1957). A History of Nutrition. The Sequence of Ideas in Nutrition Investigations. Houghton Miffin: Boston.Google Scholar
Macilwain, G. (1854). Memoirs of John Abernethy. Hurst and Blackett: London.Google Scholar
McIlwain, H. (1958). Chemical contributions, especially from the nineteenth century, to knowledge of the brain and its functioning, In History and Philosophy of Knowledge of the Brain (ed. Poynter, G.), pp. 167186. Blackwell: Oxford.Google Scholar
McIlwain, H. (1967). Henry Maudsley: molecular biologist. Bethlem Maudsley Hospital Gazette 9, 410.Google Scholar
McIlwain, H. (1983). Assay-guided isolation, linking cerebral substances and functions. Journal of Neurochemistry 41, S49.Google Scholar
McIlwain, H. (1984). Neurochemistry and Sherrington's enchanted loom. Journal of the Royal Society of Medicine 77, 417425.CrossRefGoogle ScholarPubMed
Makower, W. & Geiger, H. (1912). Practical Measurements in Radio-activity. Longmans, Green: London.Google Scholar
Maudsley, H. (1867). The Physiology and Pathology of the Mind. MacMillan: London.CrossRefGoogle Scholar
Maudsley, H. (1895). The Pathology of Mind. Macmillan: London.Google Scholar
Mellanby, E., Chick, H., Coward, K. H., Hamill, J. M., Harden, A., Hardy, W. B., Hopkins, F. G., Rosenheim, O. & Zilva, S. S.(1932). Vitamins: a Survey of Present Knowledge. HMSO: London.Google Scholar
Peters, R. A. (1924). The action of nitrous acid on the antineuritic substances in yeast. Biochemical Journal 18, 858865.CrossRefGoogle ScholarPubMed
Peters, R. A. (1936). The biochemical lesion in Vitamin B1, deficiency. Application of modern biochemical analysis in its diagnosis. Lancet i, 11611165.CrossRefGoogle Scholar
Peters, R. A. (1963). Biochemical Lesions and Lethal Synthesis. Pergamon Press: Oxford.Google Scholar
Roberts, E., Baxter, C., van Harreveld, A., Wiersma, C. A. G., Adey, , & Killam, K. F. (1960). Inhibition in the Nervous System and Gamma-aminobutyric Acid. Pergamon: London.Google Scholar
Schaumann, H. (1910). Die Aetiologie der Beriberi unter Berücksichtigung des gesamten Stoffwechsels. Archiv für Schiffs-und Tropenhygiene 14, Suppl. 8.Google Scholar
Stertürner, F. W. A. (1817). Über das Morphium, eine neue saltfähige Grundlage, und die Meconsaure, als Hauptbestandteile des Opiums. Gilberts Annalen der Physik (Leipzig) 25, 5689. Reprinted in Krause, P. (1925). Friedrich Wilh. Stertürner, der Entdecker des Morphiums. Fischer: Jena.CrossRefGoogle Scholar
Thudichum, J. L. W. (1984). A Treatise on the Chemical Constitution of the Brain. Baillière, Tindall and Cox: London.Google Scholar
Weeks, M. E. (1934). The Discovery of the Elements. Mack: Easton, Pa.Google Scholar
Willcock, E. G. & Hopkins, F. G. (1906). The importance of individual amino-acids in metabolism. Observations on the effect of adding tryptophane to a dietary in which zein is the sole nitrogenous constituent. Journal of Physiology 35, 88102.CrossRefGoogle ScholarPubMed
Williams, R. J., Eakin, R. E., Beerstecher, E. & Shive, W. (1950). The Biochemistry of B Vitamins. Reinhold: New York.CrossRefGoogle Scholar
Williams, R. R. & Spies, T. D. (1938). Vitamin B1 (Thiamin) and its Use in Medicine. Macmillan. New York.Google Scholar
Wurtman, R. J., Axelrod, J. & Kelly, D. E. (1968). The Pineal. New York: Academic Press.Google ScholarPubMed