Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-19T06:54:51.078Z Has data issue: false hasContentIssue false

The radio source in Abell 980: A Detached-Double-Double Radio Galaxy?

Published online by Cambridge University Press:  17 October 2022

Gopal-Krishna
Affiliation:
UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai 400098, India
Surajit Paul*
Affiliation:
Department of Physics, Savitribai Phule Pune University, Pune 411007, India
Sameer Salunkhe
Affiliation:
Department of Physics, Savitribai Phule Pune University, Pune 411007, India
Satish Sonkamble
Affiliation:
INAF-Padova Astronomical Observatory, Vicolo dell’Osservatorio 5, Padova I-35122, Italy
*
Corresponding author: S. Paul, e-mail: surajit@physics.unipune.ac.in

Abstract

It is argued that the new morphological and spectral information gleaned from the recently published LoFAR Two metre Sky Survey data release 2 (LoTSS-2 at 144 MHz) observations of the cluster Abell 980 (A980), in combination with its existing GMRT and VLA observations at higher frequencies, provide the much-needed evidence to strengthen the proposal that the cluster’s radio emission comes mainly from two double radio sources, both produced by the brightest cluster galaxy (BCG) in two major episodes of jet activity. The two radio lobes left from the previous activity have become diffuse and developed an ultra-steep radio spectrum while rising buoyantly through the confining hot intra-cluster medium (ICM) and, concomitantly, the host galaxy has drifted to the cluster centre and entered a new active phase manifested by a coinciding younger double radio source. The new observational results and arguments presented here bolster the case that the old and young double radio sources in A980 conjointly represent a ‘double-double’ radio galaxy whose two lobe pairs have lost colinearity due to the (lateral) drift of their parent galaxy, making this system by far the most plausible case of a ‘Detached-Double-Double Radio Galaxy’ (dDDRG).

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of the Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abazajian, K. N., et al. 2009, ApJS, 182, 543. doi: 10.1088/0067-0049/182/2/543 CrossRefGoogle Scholar
Baldwin, J. E., & Scott, P. F. 1973, MNRAS, 165, 259. doi: 10.1093/mnras/165.3.259 Google Scholar
Biju, K. G., Pandey-Pommier, M., Sunilkumar, P., Dhurde, S., Bagchi, J., Ishwara-Chandra, C. H., & Jacob, J. 2014, ASInC, 13, 155 Google Scholar
Biju, K. G., et al. 2017, MNRAS, 471, 617. doi: 10.1093/mnras/stx1476 CrossRefGoogle Scholar
Brzan, L., Rafferty, D. A., McNamara, B. R., Wise, M. W., & Nulsen, P. E. J. 2004, ApJ, 607, 800. doi: 10.1086/383519 CrossRefGoogle Scholar
Böhringer, H., Voges, W., Fabian, A. C., Edge, A. C., & Neumann, D. M. 1993, MNRAS, 264, L25. doi: 10.1093/mnras/264.1.L25 CrossRefGoogle Scholar
Brienza, M., et al. 2020, A&A, 638, A29. doi: 10.1051/0004-6361/202037457 CrossRefGoogle Scholar
Brocksopp, C., Kaiser, C. R., Schoenmakers, A. P., & de Bruyn, A. G. 2007, MNRAS, 382, 1019. doi: 10.1111/j.1365-2966.2007.12483.x CrossRefGoogle Scholar
Burns, J. O., Schwendeman, E., & White, R. A. 1983, ApJ, 271, 575. doi: 10.1086/161224 CrossRefGoogle Scholar
Burns, J. O. 1990, AJ, 99, 14. doi: 10.1086/115307 CrossRefGoogle Scholar
Chambers, K. C., et al. 2016, arXiv, arXiv:1612.05560Google Scholar
Chibueze, J. O., et al. 2021, Natur, 593, 47. doi: 10.1038/s41586-021-03434-1 CrossRefGoogle Scholar
Churazov, E., Brüggen, M., Kaiser, C. R., Böhringer, H., & Forman, W. 2001, ApJ, 554, 261. doi: 10.1086/321357 CrossRefGoogle Scholar
Condon, J. J., & Matthews, A. M. 2018, PASP, 130, 073001. doi: 10.1088/1538-3873/aac1b2 CrossRefGoogle Scholar
Cotton, W. D., et al., 2020, MNRAS, 495, 1271. doi: 10.1093/mnras/staa1240 CrossRefGoogle Scholar
Ebeling, H., et al. 1996,, 281, 799. doi: 10.1093/mnras/281.3.799 CrossRefGoogle Scholar
Enßlin, T. A., & Gopal-Krishna, , 2001, A&A, 366, 26.CrossRefGoogle Scholar
Fabian, A. C. 1994, ARA&A, 32, 277. doi: 10.1146/annurev.aa.32.090194.001425CrossRefGoogle Scholar
Fabian, A. C., Sanders, J. S., Taylor, G. B., Allen, S. W., Crawford, C. S., Johnstone, R. M., & Iwasawa, K. 2006, MNRAS, 366, 417. doi: 10.1111/j.1365-2966.2005.09896.x CrossRefGoogle Scholar
Fabian, A. C. 2012, ARA&A, 50, 455. doi: 10.1146/annurev-astro-081811-125521 CrossRefGoogle Scholar
Gaspari, M., Ruszkowski, M., & Oh, S. P. 2013, MNRAS, 432, 3401. doi: 10.1093/mnras/stt692 CrossRefGoogle Scholar
Ge, J. P., & Owen, F. N. 1993, AJ, 105, 778. doi: 10.1086/116471 CrossRefGoogle Scholar
Graham, A. W., & Scott, N. 2015, ApJ, 798, 54. doi: 10.1088/0004-637X/798/1/54 CrossRefGoogle Scholar
Gull, S. F. & Northover, K. J. E. 1973, Natur, 244, 80. doi: 10.1038/244080a0 CrossRefGoogle Scholar
Hardcastle, M. J., & Krause, M. G. H. 2013, MNRAS, 430, 174. doi: 10.1093/mnras/sts564 CrossRefGoogle Scholar
Harwood, J. J., Hardcastle, M. J., Croston, J. H., & Goodger, J. L. 2013, MNRAS, 435, 3353. doi: 10.1093/mnras/stt1526 CrossRefGoogle Scholar
Hota, A., et al. 2011, MNRAS, 417, L36. doi: 10.1111/j.1745-3933.2011.01115.x CrossRefGoogle Scholar
Intema, H. T., Jagannathan, P., Mooley, K. P., & Frail, D. A. 2017, A&A, 598, A78 Google Scholar
Jamrozy, M., Klein, U., Mack, K.-H., Gregorini, L., & Parma, P. 2004, A&A, 427, 79. doi: 10.1051/0004-6361:20048056 CrossRefGoogle Scholar
Kaiser, C. R. 2003, MNRAS, 343, 1319. doi: 10.1046/j.1365-8711.2003.06774.x CrossRefGoogle Scholar
Kalberla, P. M. W., Burton, W. B., Hartmann, D., Arnal, E. M., Bajaja, E., Morras, R., & Pöppel, W. G. L. 2005, A&A, 440, 775. doi: 10.1051/0004-6361:20041864 CrossRefGoogle Scholar
Kim, J.-Y., & Trippe, S. 2014, JKAS, 47, 195. doi: 10.5303/JKAS.2014.47.5.195 CrossRefGoogle Scholar
Longair, M. S. 2011, High Energy Astrophysics, by Malcolm S. Longair (Cambridge, UK: Cambridge University Press)CrossRefGoogle Scholar
McNamara, B. R., & Nulsen, P. E. J. 2007, ARA&A, 45, 117. doi: 10.1146/annurev.astro.45.051806.110625 CrossRefGoogle Scholar
McNamara, B. R., Nulsen, P. E. J., Wise, M. W., Rafferty, D. A., Carilli, C., Sarazin, C. L., & Blanton, E. L. 2005, Natur, 433, 45. doi: 10.1038/nature03202 CrossRefGoogle Scholar
Miley, G. 1980, ARA&A, 18, 165. doi: 10.1146/annurev.aa.18.090180.001121 CrossRefGoogle Scholar
Mittal, R., Hudson, D. S., Reiprich, T. H., & Clarke, T. 2009, A&A, 501, 835. doi: 10.1051/0004-6361/200810836 CrossRefGoogle Scholar
Morganti, R. 2017, NatAs, 1, 596. doi: 10.1038/s41550-017-0223-0 CrossRefGoogle Scholar
Offringa, A. R., et al. 2014, MNRAS, 444, 606. doi: 10.1093/mnras/stu1368 CrossRefGoogle Scholar
Pasini, T., Finoguenov, A., Brüggen, M., Gaspari, M., de Gasperin, F., & Gozaliasl, G. 2021, MNRAS, 505, 2628. doi: 10.1093/mnras/stab1451 CrossRefGoogle Scholar
Pizzolato, F., & Soker, N. 2005, ApJ, 632, 821. doi: 10.1086/444344 CrossRefGoogle Scholar
Planck Collaboration, et al. 2016, A&A, 594, A13.Google Scholar
Ramatsoku, M., et al. 2020, A&A, 636, L1. doi: 10.1051/0004-6361/202037800 CrossRefGoogle Scholar
Raouf, M., Shabala, S. S., Croton, D. J., Khosroshahi, H. G., & Bernyk, M. 2017, MNRAS, 471, 658. doi: 10.1093/mnras/stx1598 CrossRefGoogle Scholar
Rines, K., Geller, M. J., Diaferio, A., & Kurtz, M. J. 2013, ApJ, 767, 15 CrossRefGoogle Scholar
Roettiger, K., Burns, J. O., Clarke, D. A., & Christiansen, W. A. 1994, ApJL, 421, L23. doi: 10.1086/187178 CrossRefGoogle Scholar
Rudnick, L., & Lemmerman, J. A. 2009, ApJ, 697, 1341 CrossRefGoogle Scholar
Sabater, J., et al. 2019, A&A, 622, A17. doi: 10.1051/0004-6361/201833883 CrossRefGoogle Scholar
Saikia, D. J., & Jamrozy, M. 2009, BASI, 37, 63 CrossRefGoogle Scholar
Sakelliou, I., Merrifield, M. R., & McHardy, I. M. 1996, MNRAS, 283, 673. doi: 10.1093/mnras/283.2.673 CrossRefGoogle Scholar
Salunkhe, S., Paul, S., Gopal-Krishna, S. S., & Bhagat, S. 2022, A&A, 664, A186. doi: 10.1051/0004-6361/202243438 CrossRefGoogle Scholar
Sanders, J. S. 2006, MNRAS, 371, 829 CrossRefGoogle Scholar
Sbarufatti, B., Treves, A., & Falomo, R. 2005, ApJ, 635, 173. doi: 10.1086/497022 CrossRefGoogle Scholar
Schoenmakers, A. P., de Bruyn, A. G., Röttgering, H. J. A., & van der Laan, H. 2000, MNRAS, 315, 395. doi: 10.1046/j.1365-8711.2000.03432.x CrossRefGoogle Scholar
Sharma, P., McCourt, M., Quataert, E., & Parrish, I. J. 2012, MNRAS, 420, 3174. doi: 10.1111/j.1365-2966.2011.20246.x CrossRefGoogle Scholar
Shimwell, T. W., et al. 2022, A&A, 659, A1. doi: 10.1051/0004-6361/202142484 CrossRefGoogle Scholar
Shulevski, A., et al. 2015, A&A, 579, A27. doi: 10.1051/0004-6361/201425416 CrossRefGoogle Scholar
Voit, G. M., & Donahue, M. 2015, ApJL, 799, L1. doi: 10.1088/2041-8205/799/1/L1 CrossRefGoogle Scholar