Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-07T11:50:30.842Z Has data issue: false hasContentIssue false

Angular momentum and energy transport in disc–jet systems: Unravelling the contribution of saturated thermal conduction

Published online by Cambridge University Press:  21 March 2024

Ghassen Rezgui*
Affiliation:
RUPF–Department of Physics, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
Reinhold Preiner
Affiliation:
Institute of Computer Graphics and Knowledge Visualization, Graz University of Technology, Graz, Austria
*
Corresponding author: Ghassen Rezgui; Email: rzg.ghassen@gmail.com

Abstract

This study builds upon our prior work to further explore and unravel the effects of saturated thermal conduction within a viscous resistive MHD framework on the intricate transport mechanisms of angular momentum and energy in disc-jet systems. We conducted a series of 2.5-dimensional non-relativistic time-dependent numerical simulations using the PLUTO code. Employing a saturation parameter spanning [0.002-0.01], our results are consistent with previous investigations that omitted consideration of thermal conduction, affirming the established understanding that kinetic torque plays a predominant role in governing the total accretion angular momentum, surpassing the magnetic contribution within the disc. At the initial time steps of our calculations, we find that thermal conduction enhances this kinetic contribution, while concurrently diminishing the effect of magnetic contribution. In contrast to the prevailing influence of kinetic torque within the disc, we also assert the magnetic torque as the primary contributor to the total ejection angular momentum. We further unveil that doubling the saturation parameter leads to bolstering of approximately $23.7\%$ in the integral dominance of magnetic torque compared to kinetic torque within the jet. Our findings reveal that doubling the effect of thermal conduction improves the integral total accretion power by approximately 2%, thereby slightly amplifying the energy content within the system and increasing overall energy output. We underscore that as the local energy dissipation within the disc intensifies, the significance of the enthalpy accretion flux increases at the expense of the jet power. We reveal that increasing the saturation parameter mitigates enthalpy accumulation within the disc, and further restricts the jet’s energy extraction from the disc. This limitation is determined in our analysis through the decrease in the integral ratio between the bipolar jet and liberated power of approximately $13.8\%$, for twice the strength of the saturation parameter. We identify the Poynting flux as the primary contributor to total jet power, with thermal conduction exerting minimal influence on magnetic contributions. Additionally, we emphasise the integration of jet enthalpy as another significant factor in determining overall jet power, highlighting a distinct correlation between the rise in saturation parameter and heightened enthalpy contribution. Moreover, we observe the promotion of Poynting flux over kinetic flux at advanced time steps of our simulations, a trend supported by the presence of thermal conduction, which demonstrates an integral increase of approximately $11.2\%$ when considering a doubling of the saturation parameter.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbassi, S., Ghanbari, J., & Najjar, S. 2008, MNRAS, 388, 663CrossRefGoogle Scholar
Ahmane, Z., Mignone, A., Zanni, C., Massaglia, S., & Bouldjderi, A. 2020, Ap&SS, 365, 1Google Scholar
Alexiades, V., Amiez, G., & Gremaud, P.-A. 1996, CNME, 12, 313.0.CO;2-5>CrossRefGoogle Scholar
Anglada, G., Rodríguez, L. F., & Carrasco-González, C. 2018, AAR, 26, 3Google Scholar
Bally, J. 2016, ARA&A, 54, 491Google Scholar
Blandford, R. D., & Payne, D. G. 1982, MNRAS, 199, 883CrossRefGoogle Scholar
Cabrit, S., Edwards, S., Strom, S. E., & Strom, K. M. 1990, ApJ, 354, 687CrossRefGoogle Scholar
Casse, F., & Keppens, R. 2002, ApJ, 581, 988CrossRefGoogle Scholar
Contopoulos, J. 1994, ApJ, 432, 508CrossRefGoogle Scholar
Cowie, L. L., & McKee, C. F. 1977, ApJ, 211, 135CrossRefGoogle Scholar
Dal Pino, E. M. de G. 2001, ApJ, 551, 347Google Scholar
Estel, C., & Mann, G. 1999, A&A, 345, 276 Google Scholar
Evans, C. R., & Hawley, J. F. 1988, ApJ, 332, 659Google Scholar
Faghei, K. 2012, MNRAS, 420, 118CrossRefGoogle Scholar
Fukumura, K., Kazanas, D., Shrader, C., Behar, E., Tombesi, F., & Contopoulos, I. 2017, NatAs, 1, 0062CrossRefGoogle Scholar
Ghanbari, J., Abbassi, S., & Ghasemnezhad, M. 2009, MNRAS, 400, 422CrossRefGoogle Scholar
Harten, A., Lax, P. D., & van Leer, B. 1983, SIAMRv, 25, 35CrossRefGoogle Scholar
Hartigan, P., Edwards, S., & Ghandour, L. 1995, ApJ, 452, 736CrossRefGoogle Scholar
Hartigan, P., Hartmann, L., Kenyon, S. J., Strom, S. E., & Skrutskie, M. F. 1990, ApJ, 354, L25CrossRefGoogle Scholar
Kato, S. X., Kudoh, T., & Shibata, K. 2002, ApJ, 565, 1035CrossRefGoogle Scholar
Lee, C.-F. 2020, A&ARv, 28, 1Google Scholar
Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C., & Ferrari, A. 2007, ApJS, 170, 228CrossRefGoogle Scholar
Mignone, A., Zanni, C., Tzeferacos, P., Van Straalen, B., Colella, P., & Bodo, G. 2012, ApJS, 198, 7Google Scholar
Murphy, G. C., Ferreira, J., & Zanni, C. 2010, A&A, 512, A82Google Scholar
Ogilvie, G. I., & Livio, M. 2001, ApJ, 553, 158CrossRefGoogle Scholar
Ouyed, R., & Pudritz, R. E. 1997, ApJ, 482, 712CrossRefGoogle Scholar
Quataert, E. 2004, ApJ, 613, 322CrossRefGoogle Scholar
Reipurth, B., Davis, C. J., Bally, J., Raga, A. C., Bowler, B. P., Geballe, T. R., Aspin, C., & Chiang, H.-F. 2019, AJ, 158, 107CrossRefGoogle Scholar
Rezgui, G., Marzougui, H., Lili, T., Preiner, R., & Ceccobello, C. 2022, MNRAS, 514, 3925CrossRefGoogle Scholar
Rezgui, G., Marzougui, H., Woodring, J., Svoboda, J., & Lili, T. 2019, ApJ, 880, 1CrossRefGoogle Scholar
Romanova, M. M., Ustyugova, G. V., Koldoba, A. V., Chechetkin, V. M., & Lovelace, R. V. E. 1997, ApJ, 482, 708CrossRefGoogle Scholar
Romanova, M. M., Ustyugova, G. V., Koldoba, A. V., & Lovelace, R. V. E. 2009, MNRAS, 399, 1802CrossRefGoogle Scholar
Rothstein, D. M., & Lovelace, R. V. E. 2008, ApJ, 677, 1221CrossRefGoogle Scholar
Rózanska, A. 1999, MNRAS, 308, 751Google Scholar
Sander, B., & Hensler, G. 2023, MNRAS, 519, 1313CrossRefGoogle Scholar
Shadmehri, M. 2008, ASS, 317, 201CrossRefGoogle Scholar
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337 Google Scholar
Sheikhnezami, S., Fendt, C., Porth, O., Vaidya, B., & Ghanbari, J. 2012, ApJ, 757, 65CrossRefGoogle Scholar
Shibata, K., & Uchida, Y. 1985, PASJ, 37, 31 CrossRefGoogle Scholar
Spitzer, L. 1962, Physics of Fully Ionized Gases (New York, London: Interscience Publishers).Google Scholar
Stepanovs, D., & Fendt, C. 2014, ApJ, 793, 31CrossRefGoogle Scholar
Stepanovs, D., Fendt, C., & Sheikhnezami, S. 2014, ApJ, 796, 29CrossRefGoogle Scholar
Stone, J. M., & Norman, M. L. 1994, ApJ, 433, 746CrossRefGoogle Scholar
Tanaka, T., & Menou, K. 2006, ApJ, 649, 345CrossRefGoogle Scholar
Tzeferacos, P., Ferrari, A., Mignone, A., Zanni, C., Bodo, G., & Massaglia, S. 2009, MNRAS, 400, 820CrossRefGoogle Scholar
Tzeferacos, P., Ferrari, A., Mignone, A., Zanni, C., Bodo, G., & Massaglia, S. 2013, MNRAS, 428, 3151CrossRefGoogle Scholar
Uchida, Y., & Shibata, K. 1985, PASJ, 37, 515 CrossRefGoogle Scholar
Vieser, W., & Hensler, G. 2007, A&A, 475, 251CrossRefGoogle Scholar
Vijayaraghavan, R., & Sarazin, C. 2017, ApJ, 841, 22 CrossRefGoogle Scholar
Vlahakis, N., & Tsinganos, K. 1998, MNRAS, 298, 777CrossRefGoogle Scholar
Zanni, C., Ferrari, A., Rosner, R., Bodo, G., & Massaglia, S. 2007, A&A, 469, 811CrossRefGoogle Scholar
Zanni, C., & Ferreira, J. 2009, A&A, 508, 1117Google Scholar