Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T10:32:12.908Z Has data issue: false hasContentIssue false

The Effect of Drag from the Galactic Hot Halo on the Magellanic Stream and Leading Arm

Published online by Cambridge University Press:  02 January 2013

Jonathan Diaz*
Affiliation:
International Centre for Radio Astronomy Research, M468, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
Kenji Bekki
Affiliation:
International Centre for Radio Astronomy Research, M468, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
*
BCorresponding author. Email: jonathan.diaz@icrar.org
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the effect of drag induced by the Galactic hot halo on the two neutral hydrogen (HI) cloud complexes associated with the Large and Small Magellanic Clouds: the Magellanic Stream (MS) and the Leading Arm (LA). In particular, we adopt the numerical models of previous studies and re-simulate the tidal formation of the MS and LA with the inclusion of a drag term. We find that the drag has three effects which, although model-dependent, may bring the tidal formation scenario into better agreement with observations: correcting the LA kinematics, reproducing the MS column density gradient, and enhancing the formation of MS bifurcation. We furthermore propose a two-stage mechanism by which the bifurcation forms. In general, the inclusion of drag has a variety of both positive and negative effects on the global properties of the MS and LA, including their on-sky positions, kinematics, radial distances, and column densities. We also provide an argument which suggests that ram-pressure stripping and tidal stripping are mutually exclusive candidates for the formation of the MS and LA.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2011

References

Bekki, K. & Chiba, M., 2005, MNRAS, 356, 680Google Scholar
Bekki, K., Chiba, M. & McClure-Griffiths, N. M., 2008, ApJ, 672, L17Google Scholar
Bekki, K. & Chiba, M., 2009, PASA, 26, 48CrossRefGoogle Scholar
Besla, G., Kallivayalil, N., Hernquist, L., van der Marel, R. P., Cox, T. J. & Keres, D., 2010, ApJ, 721, L97CrossRefGoogle Scholar
Bland-Hawthorn, J., Sutherland, R., Agertz, O. & Moore, B., 2007, ApJ, 670, L109CrossRefGoogle Scholar
Crain, R. et al. , 2010, MNRAS, 407, 1403CrossRefGoogle Scholar
Bruns, C. et al. , 2005, A&A, 432, 45Google Scholar
Connors, T. W., Kawata, D. & Gibson, B. K., 2006, MNRAS, 371, 108CrossRefGoogle Scholar
Diaz, J. & Bekki, K., 2011, MNRAS, 413, 2015 (DB11)CrossRefGoogle Scholar
Gardiner, L. T. & Noguchi, M., 1996, MNRAS, 278, 191 (GN96)Google Scholar
Gardiner, L. T., 1999, in ASP Conf. Ser. 166, Stromlo Workshop on High-Velocity Clouds, Eds. Gibson, B. K. & Putman, M. E. (San Francisco: ASP), 292Google Scholar
Gunn, J. E. & Gott, J. R., 1972, ApJ, 176, 1CrossRefGoogle Scholar
Heitsch, F. & Putman, M. E., 2009, ApJ, 698, 1485Google Scholar
Heller, P. & Rohlfs, K., 1994, A&A, 291, 743Google Scholar
Kallivayalil, N., van der Marel, R. P., Alcock, C., Axelrod, T., Cook, K. H., Drake, A. J. & Geha, M., 2006, ApJ, 638, 772Google Scholar
Mastropietro, C., Moore, B., Mayer, L., Wadsley, J. & Stadel, J., 2005, MNRAS, 363, 509 (M05)CrossRefGoogle Scholar
McClure-Griffiths, N. M. et al. , 2008, ApJ, 673, L143Google Scholar
Meurer, G. R., Bicknell, G. V. & Gingold, R. A., 1985, PASA, 7, 19Google Scholar
Murai, T. & Fujimoto, M., 1980, PASJ, 32, 581Google Scholar
Navarro, J. F., Frenk, C. S. & White, S. D. M., 1996, ApJ, 490, 493Google Scholar
Nidever, D. L. et al. , 2010, ApJ, 723, 1618Google Scholar
Putman, M. E. et al. , 1998, Nature, 394, 752CrossRefGoogle Scholar
Putman, M. E., Staveley-Smith, L., Freeman, K. C., Gibson, B. K. & Barnes, D. G., 2003a, ApJ, 586, 170CrossRefGoogle Scholar
Putman, M. E. et al. , 2003b, ApJ, 597, 948Google Scholar
Sembach, K. R. et al. , 2003, ApJS, 146, 165Google Scholar
Stanimirovic, S. et al. 2008, ApJ, 680, 276Google Scholar
Vieira, K. et al. 2010, AJ, 140, 1934Google Scholar
Wakker, B. P. et al. , 1999, Nature, 402, 388CrossRefGoogle Scholar
Wakker, B. P., 2001, ApJS, 136, 463CrossRefGoogle Scholar
Westmeier, T. & Koribalski, B. S., 2008, MNRAS, 388, L29Google Scholar
Westmeier, T., Braun, R. & Koribalski, B. S., 2010, MNRAS, 410, 2217Google Scholar
Wolfire, M. G., McKee, C. F., Hollenbach, D. & Tielens, A., 1995, ApJ, 453, 673Google Scholar