Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-09T15:17:53.400Z Has data issue: false hasContentIssue false

The Las Campanas/AAT Rich Cluster Survey

Published online by Cambridge University Press:  05 March 2013

Eileen O'Hely
Affiliation:
Department of Astrophysics and Optics, School of Physics, University of New South Wales, NSW 2052, Australia; eoh@edwin.phys.unsw.edu.au
Warrick J. Couch
Affiliation:
Department of Astrophysics and Optics, School of Physics, University of New South Wales, NSW 2052, Australia; wjc@edwin.phys.unsw.edu.au
Ian Smail
Affiliation:
Department of Physics, University of Durham, South Rd, Durham, DH1 3LE, UK; ian.smail@durham.ac.uk
Alastair C. Edge
Affiliation:
Department of Physics, University of Durham, South Rd, Durham, DH1 3LE, UK; ace@durham.ac.uk
Ann Zabludoff
Affiliation:
UCO/Lick Observatory and Board of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064, USA; aiz@ucolick.org
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some unsolved cosmological questions remain in relation to the formation of structure in the universe. One way of addressing such questions is to use rich galaxy clusters as tracers of the growth of large-scale structure. To date, studies of rich clusters of galaxies have concentrated on systems generally at either high redshift or in the local universe. The properties of clusters and their constituent galaxies at these extrema are becoming well understood. In particular, it is becoming clear that rich clusters have undergone considerable evolution both dynamically and in their galaxy populations over the last 5–8 Gyr. We are undertaking a detailed study of rich clusters of galaxies in the range 0·05 ≲ z ≲ 0·15. Our results will be directly comparable to those of previous studies both at high and low redshift and, for the first time, provide continuous coverage across this important and unexplored transitory epoch in terms of galaxy evolution and structure growth.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 1998

References

Abell, G., Corwin, H., & Olowin, R. 1989, ApJS, 70, 19 (ACO)CrossRefGoogle Scholar
Abraham, R. G., van den Burgh, S., Glazebrook, K., Ellis, R. S., Santiago, B. X., Surma, P., & Griffiths, R. E. 1996, ApJS, 107, 1 CrossRefGoogle Scholar
Bahcall, N. A. 1997, to appear in Formation of Structure in the Universe, Jerusalem Winter SchoolGoogle Scholar
Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393 Google Scholar
Burstein, D., & Heiles, C. 1984, ApJS, 54, 33 CrossRefGoogle Scholar
Butcher, H., & Oemler, A. 1978, ApJ, 219, 18 Google Scholar
Butcher, H., & Oemler, A. 1984, ApJ, 285, 426 Google Scholar
Caldwell, N., Rose, J. A., Sharples, R. M., Ellis, R. S., & Bower, R. G. 1993, AJ, 106, 473 CrossRefGoogle Scholar
Colless, M., et al. 1998, http://msowww.anu.edu.au/colless/2dF/ (home page of the 2dF Galaxy Redshift Survey)Google Scholar
Colless, M., & Dunn, A. M. 1996, ApJ, 458, 435 Google Scholar
Couch, W. J. 1981, PhD thesis, Australian National University Google Scholar
Couch, W. J., & Sharples, R. M. 1987, MNRAS, 229, 423 Google Scholar
Couch, W. J., Barger, A. J., Smail, I., Ellis, R. S., & Sharples, R. M. 1998, ApJ, 497, 188 Google Scholar
Dalton, G. B., Maddox, S. J., Sutherland, W. J., & Efstathiou, G. 1997, MNRAS, 289, 263 CrossRefGoogle Scholar
Dressler, A. 1980, ApJ, 236, 351 Google Scholar
Dressler, A. 1988, AJ, 95, 284 Google Scholar
Dressler, A., Oemler, A, Couch, W. J., Smail, I., Ellis, R. S., Barger, A., Poggianti, B. M., & Sharples, R. M. 1997, ApJ, 490, 577 Google Scholar
Dressler, A., & Shectman, S. A. 1988, AJ, 95, 284 Google Scholar
Ebeling, H., Voges, W., Bohringer, H., Edge, A. C., Huchra, J. P., & Briel, U. G. 1996, MNRAS, 281, 799 (E96)Google Scholar
Evrard, A. E. 1990, ApJ, 363, 349 Google Scholar
Evrard, A. E., Mohr, J. J., Fabricant, D. G., & Geller, M. J. 1993, ApJL, 419, L9 Google Scholar
Fabricant, D., Beers, T. C., Geller, M. J., Gorenstein, P., Huchra, J. P., & Kurtz, M. J. 1986, ApJ, 308, 530.CrossRefGoogle Scholar
Fort, B., & Mellier, Y. 1994, A&AR, 5, 239 Google Scholar
Kron, R. G. 1980, ApJS, 43, 305 CrossRefGoogle Scholar
Lacey, C., & Cole, S. 1993, MNRAS, 262, 627 Google Scholar
Landolt, A. U. 1992, AJ, 104, 340 CrossRefGoogle Scholar
Richstone, D., Loeb, A., & Turner, E. 1992, ApJ, 393, 477 Google Scholar
Schade, D., Carlberg, R. G., Yee, H. K. C., Lopez-Cruz, O., & Ellingson, E. 1996, ApJ, 465, L103 Google Scholar
Smail, I., Dressler, A., Couch, W. J., Ellis, R. S., Oemler, A., Butcher, H., & Sharples, R. M. 1997, ApJS, 110, 213 Google Scholar
White, S. D. M., Briel, V. G., & Henry, J. P. 1993, MNRAS, 261, L8 Google Scholar
Zabludoff, A. I., & Zaritsky, D. 1995, ApJL, 447, 21 (ZZ95)Google Scholar