Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-09T15:19:57.405Z Has data issue: false hasContentIssue false

Obscuration by Diffuse Cosmic Dust

Published online by Cambridge University Press:  05 March 2013

Frank J. Masci*
Affiliation:
School of Physics, University of Melbourne, Parkville, Vic. 3052, Australia; fmasci@physics.unimelb.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

If the background universe is observed through a significant amount of diffusely distributed foreground dust, then studies at optical wavelengths may be severely biased. Previous studies investigating the effects of foreground dust on background sources assumed dust to be ‘compactly’ distributed, i.e. on scales comparable to the visible extent of normal galaxies. We show, however, that diffuse dust is more effective at obscuring background sources. Galaxy clusters are a likely location for ‘large-scale’ diffusely distributed dust, and its effect on the counts of background sources is explored. We also explore the implications of a hypothesised diffuse intergalactic dust component uniformly distributed to high redshift with comoving mass density equal to that associated with local galaxies. In this case, we predict a deficit in background sources about three times greater than that found in previous studies.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 1998

References

Allen, S. W. 1995, MNRAS, 276, 947 CrossRefGoogle Scholar
Babul, A., & Rees, M. J. 1992, MNRAS, 255, 346 CrossRefGoogle Scholar
Bartelmann, M., & Scheider, P. 1993, A&A, 268, 1 Google Scholar
Bartelmann, M., Scheider, P., & Hasinger, G. 1994, A&A, 290, 399 Google Scholar
Bogart, R. S., & Wagoner, R. V. 1973, ApJ, 181, 609 CrossRefGoogle Scholar
Boyle, B. J., Fong, R., & Shanks, T. 1988, MNRAS, 231, 897 CrossRefGoogle Scholar
Draine, B. T., & Salpeter, E. E. 1979, ApJ, 231, 77 CrossRefGoogle Scholar
Dwek, E., Rephaeli, Y., & Mather, J. C. 1990, ApJ, 350, 104 CrossRefGoogle Scholar
Fabian, A. C., Nulsen, P. E. J., & Canizares, C. R. 1991, A&AR, 2, 191 Google Scholar
Fall, S. M., & Pei, Y. C. 1993, ApJ, 402, 479 CrossRefGoogle Scholar
Forman, W., Jones, C., & Tucker, W. 1985, ApJ, 293, 102 CrossRefGoogle Scholar
Giovanelli, R., Haynes, M. P., Salzer, J. J., Wegner, G., Da Costa, L. N., & Freudling, W. 1994, AJ, 107, 2036 CrossRefGoogle Scholar
Goudfrooij, P., de Jong, T., Hansen, L., & Nørgaard-Nielsen, H. U. 1994, MNRAS, 271, 833 CrossRefGoogle Scholar
Grevesse, N., & Anders, E. 1991, Solar Interior & Atmosphere (Tucson: University of Arizona Press), p. 1227 Google Scholar
Heisler, J., & Ostriker, J. P. 1988, ApJ, 332, 543 CrossRefGoogle Scholar
Hu, E. M., Cowie, L. L., & Wang, Z. 1985, ApJS, 59, 447 CrossRefGoogle Scholar
Hu, E. M. 1992, ApJ, 391, 608 CrossRefGoogle Scholar
Jansen, R. A., Knappen, J. H., Beckman, J. E., Peletier, R. F., & Hes, R. 1994, MNRAS, 270, 373 CrossRefGoogle Scholar
Lees, J. F., Knapp, G. R., Rupen, M. P., & Phillips, T. G. 1991, ApJ, 379, 177 CrossRefGoogle Scholar
Lilly, S. J., & Cowie, L. L. 1987, in Infrared Astronomy with Arrays, ed. C. G. Wynn-Williams & E. E. Becklin (Honolulu: Univ. of Hawaii), p. 473 Google Scholar
McDowell, J. C. 1986, MNRAS, 223, 763 CrossRefGoogle Scholar
Margolis, S. H., & Schramm, D. N. 1977, ApJ, 214, 339 CrossRefGoogle Scholar
Masci, F. J. 1997, PhD thesis, University of Melbourne, astro-ph/9801181 Google Scholar
Masci, F. J., & Webster, R. L. 1998, MNRAS, submittedGoogle Scholar
Nath, B. B., & Trentham, N. 1997, MNRAS, 291, 505 CrossRefGoogle Scholar
Olive, K. A., Schramm, D. N., Steigman, G., & Walker, T. P. 1990, Phys. Lett. B, 236, 454 CrossRefGoogle Scholar
Ostriker, J. P., & Heisler, J. 1984, ApJ, 278, 1 CrossRefGoogle Scholar
Pei, Y. C. 1992, ApJ, 395, 130 CrossRefGoogle Scholar
Pei, Y. C., & Fall, S. M. 1995, ApJ, 454, 69 CrossRefGoogle Scholar
Peletier, R. F., Valentijn, E. A., Moorwood, A. F. M., Freudling, W., Knappen, J. H., & Beckman, J. E. 1995, A&A, 300, L1 Google Scholar
Rodrigues-Williams, L. L., & Hawkins, C. J. 1995, Proc. 5th Annual Astrophys. Conf., MarylandGoogle Scholar
Rodrigues-Williams, L. L., & Hogan, C. J. 1994, AJ, 107, 451 CrossRefGoogle Scholar
Romani, R. W., & Maoz, D. 1992, ApJ, 386, 36 CrossRefGoogle Scholar
Rudnicki, K. 1986, Proc. Internat. Physics Summer School ‘Enrico Fermi’, 86, 480 Google Scholar
Sarazin, C. L. 1986, Rev. Mod. Phys., 58, 1 CrossRefGoogle Scholar
Seitz, S., & Scheider, P. 1995, A&A, 302, 9 Google Scholar
Songaila, A., & Cowie, L. L. 1996, AJ, 112, 335 CrossRefGoogle Scholar
Takeda, H., Nulsen, P. E. J., & Fabian, A. C. 1984, MNRAS, 208, 261 CrossRefGoogle Scholar
Tinsley, B. M. 1976, ApJ, 208, 797 CrossRefGoogle Scholar
Tyson, J. A. 1988, AJ, 96, 1 CrossRefGoogle Scholar
Véron-Cetty, M. P., & Véron, P. 1989, A Catalogue of Quasars and Active Nuclei, 4th edn (Munich: ESO)Google Scholar
Wang, B. 1991, ApJ, 374, 456 CrossRefGoogle Scholar
Webster, R. L., Francis, P. J., Peterson, B. A., Drinkwater, M. J., & Masci, F. J. 1995, Nature, 375, 469 CrossRefGoogle Scholar
White, S. D. M., & Frenk, C. S. 1991, ApJ, 379, 52 CrossRefGoogle Scholar
Wise, M. W., O'Connell, R. W., Bregman, J. N., & Roberts, M. S. 1993, ApJ, 405, 94 CrossRefGoogle Scholar
Womble, D. S., Sargent, W. L. W., & Lyons, R. S. 1996, in Cold Gas at High Redshift, ed. M. Bremer et al. (Dordrecht: Kluwer)Google Scholar
Wright, E. L. 1990, ApJ, 353, 411 CrossRefGoogle Scholar
Zaritsky, D. 1994, AJ, 108, 1619 CrossRefGoogle Scholar