Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-08-05T06:21:14.611Z Has data issue: false hasContentIssue false

On the Shape of the Galactic Dark Matter Halo

Published online by Cambridge University Press:  05 March 2013

Amina Helmi*
Affiliation:
Astronomical Institute Utrecht, 3508 TA Utrecht, The Netherlands Kapteyn Institute, 9700 AV Groningen, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The confined nature of the debris from the Sagittarius dwarf to a narrow trail on the sky has recently prompted the suggestion that the dark matter halo of our Galaxy should be nearly spherical (Ibata et al. 2001; Majewski et al. 2003). This would seem to be in strong contrast with predictions from cold dark matter (CDM) simulations, where dark halos are found to have typical density axis ratios of 0.6 to 0.8. Here I present numerical simulations of the evolution of a system like the Sagittarius dSph in a set of Galactic potentials with varying degrees of flattening. These simulations show that the Sagittarius streams discovered so far are too young dynamically to be sensitive to the shape of the dark halo of the Milky Way. The data presently available are entirely consistent with a Galactic dark matter halo that could either be oblate or prolate, with density axis ratios c/a that range from 0.6 to 1.6 within the region of the halo probed by the orbit of the Sagittarius dwarf.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2004

References

Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton: Princeton University Press)Google Scholar
Bullock, J. S. 2002, in Proceedings of the Yale Cosmology Workshop ‘The Shapes of Galaxies and Their Dark Matter Halos’, ed. P. Natarajan (Singapore: World Scientific), p. 109 Google Scholar
Davé, R., Spergel, D. N., Steinhardt, P. J., & Wandelt, B. D. 2001, ApJ, 547, 574 Google Scholar
Dubinski, J., & Carlberg, R. G. 1991, ApJ, 378, 496 Google Scholar
Frenk, C. S., White, S. D. M., Davis, M., & Efstathiou, G. 1988, ApJ, 327, 507 Google Scholar
Helmi, A. 2003, submitted to MNRAS (astro-ph/0309579)Google Scholar
Helmi, A., & White, S. D. M. 2001, MNRAS, 323, 529 Google Scholar
Ibata, R. A., Wyse, R. F. G., Gilmore, G., Irwin, M. J., & Suntzeff, N. B. 1997, AJ, 113, 634 Google Scholar
Ibata, R., Lewis, G., Irwin, M., Totten, E., & Quinn, T. 2001, ApJ, 551, 294 Google Scholar
Ivezic, Z., et al. (SDSS), 2000, AJ, 120, 963 Google Scholar
Johnston, K. V. 1998, ApJ, 495, 297 Google Scholar
Lynden-Bell, D., & Lynden-Bell, R. M. 1995, MNRAS, 275, 429 Google Scholar
Majewski, S., Skrutskie, M. F., Weinberg, M. D., & Ostheimer, J. C. 2003, ApJ, 599, 1082 Google Scholar
Mayer, L., Moore, B., Quinn, T., Governato, F., & Stadel, J. 2002, MNRAS, 336, 119 Google Scholar
Milgrom, M. 2001, MNRAS, 326, 1261 Google Scholar
Pfenniger, D., & Combes, F. 1994, A&A, 285, 94 Google Scholar
Thomas, P. A., et al. 1998, MNRAS, 296, 1061 Google Scholar
White, S. D. M. 1983, ApJ, 274, 53 Google Scholar
Yanny, B., et al. (SDSS), 2000, ApJ, 540, 825 Google Scholar
Yoshida, N., Springel, V., White, S. D. M., & Tormen, G. 2000, ApJ, 535, L103 Google Scholar
Zaritsky, D., & White, S. D. M. 1988, MNRAS, 235, 289 Google Scholar