Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-04T08:33:21.809Z Has data issue: false hasContentIssue false

The Warm Ionised Medium in Spiral Galaxies: A View from Above

Published online by Cambridge University Press:  16 May 2016

René A. M. Walterbos*
Affiliation:
Astronomy Department, New Mexico State University, MSC 4500, Box 30001, Las Cruces, NM 88003, USA; rwalterb@nmsu.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The warm ionised medium (WIM), also referred to as diffuse ionised gas (DIG), contains most of the mass of interstellar medium in ionised form, contributing as much as 30% of the total atomic gas mass in the solar neighborhood. The advent of CCDs has enabled unprecedented study of this medium in external galaxies, probing a variety of environments. In particular, we can derive the morphology of the WIM, its distribution across disks, and the correlation with other Population I material. Spectroscopy of the WIM makes it possible to test various ionisation models. I will review here our current understanding of the properties of the WIM in spiral galaxies. A perhaps unexpected result is that the Hα emission from the WIM contributes about 40% of the total observed Hα luminosity from spirals. This places severe constraints on possible sources of ionisation, since only photoionisation by OB stars meets this requirement. Spectroscopic measurements of forbidden line strengths appear in reasonable agreement with photoionisation models. It is not yet clear if the Lyman continuum photons that ionise the WIM are mostly from OB stars located inside traditional HII regions, or from field OB stars.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 1998

References

Bland-Hawthorn, J., & Jones, D. H. 1998, PASA, 15, 44 Google Scholar
Domgörgen, H., & Mathis, J. S. 1994, ApJ, 428, 647 Google Scholar
Elmegreen, B. G. 1998, PASA, 15, 74 Google Scholar
Ferguson, A. M. N., Wyse, R. F. G., Gallagher, J. S., & Hunter, D. A. 1996a, AJ, 111, 226 Google Scholar
Ferguson, A. M. N., Wyse, R. F. G., & Gallagher, J. S. 1996b, AJ, 112, 256 CrossRefGoogle Scholar
Greenawalt, B. E., 1997 PhD thesis, New Mexico State University Google Scholar
Greenawalt, B. E., Walterbos, R. A. M., & Braun, R. 1997, ApJ, 483, 666 Google Scholar
Hill, J. K., et al. 1995, ApJ, 438, 181 Google Scholar
Hoopes, C. G., Walterbos, R. A. M., & Greenawalt, B. E. 1996, AJ, 112, 1429 Google Scholar
Hoopes, C. G., & Walterbos, R. A. M. 1997, in The Ultraviolet Universe at Low and High Redshift, ed. W.H. Waller (Woodbury, Ny: AIP), p. 94 Google Scholar
Hunter, D. A., & Gallagher, J. S. 1990, ApJ, 362, 480 Google Scholar
Hunter, D. A., & Gallagher, J. S. 1992, ApJ, 391, L1 Google Scholar
Kulkarni, S. R., & Heiles, C. 1988, in Galactic and Extragalactic Radio Astronomy, ed. G. Verschuur & K. I. Kellermann (Berlin: Springer), p. 95 Google Scholar
Rand, R. J. 1997, ApJ, 474, 129 Google Scholar
Rand, R. J. 1998, PASA, 15, 106 Google Scholar
Rand, R. J., Kulkarni, S. R., & Hester, J. J. 1990, ApJ, 352, L1 Google Scholar
Reynolds, R. J., 1988, ApJ, 333, 341 Google Scholar
Reynolds, R. J., & Tufte, S. L. 1993, ApJ, 439, L17 Google Scholar
Reynolds, R. J., et al. 1998, PASA, 15, 14 Google Scholar
Slavin, J. D., Shull, J. M., & Begelman, M. C. 1993, ApJ, 407, 83 Google Scholar
Walterbos, R. A. M., & Braun, R. 1992, A&AS, 92, 625 Google Scholar
Walterbos, R. A. M., & Braun, R. 1994, ApJ, 431, 156 Google Scholar