Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-11T15:25:59.688Z Has data issue: false hasContentIssue false

Ligand–receptor interactions: facts and fantasies

Published online by Cambridge University Press:  17 March 2009

Irving M. Klotz
Affiliation:
Department of Chemistry, Northwestern University, Evanston, IL 60201, U.S.A.

Extract

Except when radiation participates, all biological activities involve contact interactions between constituent reactants. At the molecular level, if one of the participants is smaller than its complementary partner, the former is usually designated the ‘ligand’ and the latter the ‘receptor’. Thus in an enzyme–substrate complex, the substrate is the ligand, the enzyme is the receptor. In immunological interactions, the ligand is the hapten or antigen, the receptor is the immunoglobulin. Neurotransmitters or hormones are effector ligands when they are bound to receptor sites at synapses or on cell membranes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allewell, N. M., Friedland, J. & Niekamp, K. (1975). Calorimetric analysis of aspartate transcarbamylase from Escherichia coli: binding of cytosine 5′-triphosphate and adenosine 5′-triphosphate. Biochemistry 14, 224230.CrossRefGoogle Scholar
Ashbrook, J. D., Spector, A. A., Santos, E. C. & Fletcher, J. E. (1975). Long chain fatty acid binding to human plasma albumin. J. biol. Chem. 250, 23332338.CrossRefGoogle ScholarPubMed
Bowling, A. C. & DeLorenzo, R. J. (1982). Micromolar affinity benzodiazepine receptors: identification and characterization in central nervous system. Science 216, 12471250.CrossRefGoogle ScholarPubMed
Burley, S. K. & Petsko, G. A. (1985). Aromatic–aromatic interaction: a mechanism of protein structure stabilization. Science 229, 2328.CrossRefGoogle ScholarPubMed
Cohlberg, J. A., Pigiet, V. P. Jr, & Schachman, H. K. (1972). Structure and arrangement of the regulatory subunits in aspartate transcarbamylase. Biochemistry II, 33963411.CrossRefGoogle Scholar
Feldman, H. A. (1972). Mathematical theory of complex ligand-binding systems at equilibrium: some methods for parameter fitting. Analyt. Biochem. 48, 317338.CrossRefGoogle ScholarPubMed
Feldman, H. A. (1983). Statistical limits in Scatchard analysis. J. biol. Chem. 258, 1286512867.CrossRefGoogle ScholarPubMed
Finney, J. L. (1984). Solvent effects in biomolecular systems and processes. J. Physique 45, colloque C7, 197210.Google Scholar
Finney, J. L., Gellatly, B. J., Golton, I. C. & Goodfellow, J. (1980). Solvent effects and polar interactions in the structural stability and dynamics of globular proteins. Biophys. J. 32, 1733.CrossRefGoogle ScholarPubMed
Fletcher, J. E., Spector, A. A. & Ashbrook, J. D. (1970). Analysis of macromolecule-ligand binding by determination of stepwise equilibrium constants. Biochemistry 9, 45804587.CrossRefGoogle ScholarPubMed
Hagler, A. T., Osguthorpe, D. J., Dauber-Osguthorpe, P. & Hempel, J. C. (1985). Dynamics and conformational energetics of a peptide hormone: vasopressin. Science 227, 13091315.CrossRefGoogle ScholarPubMed
Halsey, J. F. & Biltonen, R. L. (1975). The thermodynamics of hapten and antigen binding by rabbit anti-dinitrophpenyl antibody. Biochemistry 14, 800804.CrossRefGoogle ScholarPubMed
Honoré, B. & Brodersen, R. (1984). Albumin binding of anti-inflammatory drugs. Utility of a site-oriented versus a stoichiometric analysis. Molec. Pharmac. 25, 137150.Google ScholarPubMed
Honzatko, R. B., Crawford, J. L., Monaco, H. L., Ladner, J. E., Ewards, B. P. F., Evans, D. R., Warren, S. G., Wiley, D. C., Ladner, R. C. & Lipscomb, W. N. (1982). Crystal and molecular structures of native and CTP-liganded aspartate carbamoyltransferase from Escherichia coli. J. molec. Biol. 160, 219263.CrossRefGoogle ScholarPubMed
Jeng, A. C., Ryan, T. E. & Shamoo, A. E. (1978). Isolation of a low molecular weight Ca2+ carrier from calf heart inner mitochondrial membrane. Proc. natn Acad. Sci. U.S.A. 75, 21252129.CrossRefGoogle ScholarPubMed
Jennissen, H. P. (1976). Evidence for negative cooperativity in the adsorption of phosphorylase b on hydrophobic agaroses. Biochemistry 15, 56835692.CrossRefGoogle ScholarPubMed
Karplus, M. & McCammon, J. A. (1983). Dynamics of proteins: elements and function. A. Rev. Biochem. 53, 263300.CrossRefGoogle Scholar
Kauzmann, W. (1959). Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14, 163.CrossRefGoogle ScholarPubMed
Klotz, I. M. (1960). Non-covalent bonds in protein structure. Brookhaven Symp. Biol. 13, 2548.Google ScholarPubMed
Klotz, I. M. (1983). Ligand–receptor interactions: what we can and cannot learn from binding measurements. Trends Pharmac. Sci. 4, 253255CrossRefGoogle Scholar
Klotz, I. M. (1986). Introduction to Biomolecular Energetics, Orlando, Florida: Academic Press.Google Scholar
Klotz, I. M. & Curme, H. G. (1948). The thermodynamics of metallo-protein combinations. Copper with bovine serum albumin. J. Am. chem. Soc. 70, 939943.CrossRefGoogle ScholarPubMed
Klotz, I. M. & Hunston, D. L. (1971). Properties of graphical representations of multiple classes of binding sites. Biochemistry 10, 30653069.CrossRefGoogle ScholarPubMed
Klotz, I. M. & Hunston, D. L. (1975). Protein interactions with small molecules. J. biol. Chem. 250, 30013009.CrossRefGoogle ScholarPubMed
Klotz, I. M. & Hunston, D. L. (1979). Protein affinities for small molecules: conceptions and misconceptions. Archs Biochem. Biophys. 193, 314328.CrossRefGoogle ScholarPubMed
Klotz, I. M. & Hunston, D. L. (1984). Mathematical models for ligand–receptor binding. J biol. Chem. 259, 1006010062.CrossRefGoogle ScholarPubMed
Klotz, I. M., Walker, F. M. & Pivan, R. B. (1946). The binding of organic ions by proteins. J. Am. chem. Soc. 68, 14861490.CrossRefGoogle ScholarPubMed
Levitt, M. (1983). Molecular dynamics of native protein. II. Analysis and nature of motion. J. molec. Biol. 168, 621657.CrossRefGoogle ScholarPubMed
McGhee, J. D. & Von Hippel, P. H. (1974). Theoretical aspects of DNA-protein interactions: cooperative and non-cooperative binding of large ligands to a one-dimensional homogeneous lattice. J. molec. Biol. 86, 469489.CrossRefGoogle Scholar
Momany, F. A., McGuire, R. F., Burgess, A. W. & Scheraga, H. A. (1975). Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids. J phys. Chem. 79, 23612381.CrossRefGoogle Scholar
Munson, P. J. & Rodbard, D. (1980). Ligand: a versatile computerized approach for characterization of ligand-binding systems. Analyt. Biochem. 107, 220239.CrossRefGoogle ScholarPubMed
Norby, J. G., Ottolenghi, P. & Jensen, J. (1980). Scatchard plot: common misinterpretation of binding experiments. Analyt. Biochem. 102, 318320.CrossRefGoogle ScholarPubMed
Pangali, C., Rao, M. & Berne, B. J. (1979). A Monte Carlo simulation of the hydrophobic interaction. J. chem. Phys. 71, 29752981.CrossRefGoogle Scholar
Parak, F. & Knapp, E. W. (1984). A consistent picture of protein dynamics. Proc. natn. Acad. Sci. U.S.A. 81, 70887092.CrossRefGoogle ScholarPubMed
Pratt, L. & Chandler, D. (1977). Theory of the hydrophobic effect. J. chem. Phys. 67, 36833704.CrossRefGoogle Scholar
Rossky, P. J. & Karplus, M. (1979). Solvation: a molecular dynamics study of a dipeptide in water. J. Am. chem. Soc. 101, 19131937.CrossRefGoogle Scholar
Savage, H. F. J. (1983). Ph.D. Thesis, University of London.Google Scholar
Scatchard, G., Scheinberg, I. H. & Armstrong, S. H. (1950). Physical chemistry of protein solutions. IV. The combination of human serum albumin with chloride ion. J. Am. chem. Soc. 72, 535540.CrossRefGoogle Scholar
Simms, H. S. (1926). Dissociation of polyvalent substances, I. Relation of constants to titration data. J. Am. chem. Soc. 48, 12391261.CrossRefGoogle Scholar
Soares de Araujo, P., Rosseneu, M. Y., Kremer, J. M. H., van Zoelen, E. J. J. & de Haas, G. H. (1979). Structure and thermodynamic properties of the complexes between phospholipase A2 and lipid micelles. Biochemistry 18, 580586.CrossRefGoogle Scholar
Sohon, H. (1944). Engineering Mathematics. New York: Van Nostrand.Google Scholar
Skolnick, P., Moncada, V., Barker, J. L. & Paul, S. M. (1981). Pentobarbital: Dual actions to increase brain benzodiazepine receptor affinity. Science 211, 14481450.CrossRefGoogle ScholarPubMed
Suter, P. & Rosenbusch, J. (1976). Determination of ligand binding: partial and full saturation of aspartate transcarbamylase. J. biol. Chem. 251, 59865991.CrossRefGoogle ScholarPubMed
Swaminathan, S., Harrison, S. W. & Beveridge, D. L. (1978). Monte Carlo studies on the structure of a dilute aqueous solution of methane. J. Am. chem. Soc. 100, 57055712.CrossRefGoogle Scholar
Teeter, M. M. (1984). Water structure of a hydrophobic protein at atomic resolution: pentagon rings of water molecules in crystals of crambin. Proc. natn. Acad. Sci. U.S.A. 81, 60146018.CrossRefGoogle ScholarPubMed
von Muralt, A. L. (1930). The titration constants of multivalent substances. J. Am. chem. Soc. 52, 35183523.CrossRefGoogle Scholar
Wagner, J. G. (1985). Estimation of number of receptor sites: a misconception: a response. Biopharm. Drug Disposti. 6, 107.CrossRefGoogle Scholar
Warshel, A. (1978). Energetics of enzyme catalysis. Proc. natn. Acad. Sci. U.S.A. 75, 52505254.CrossRefGoogle ScholarPubMed
Wolff, B. (1932). In Haldane, J. B. S. and Stern, K. G., Allgemeine Chemie der Enzyme, pp. 119120. Dresden: Steinkopf.Google Scholar