Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-16T14:21:55.602Z Has data issue: false hasContentIssue false

Molecular aspects of photoreceptor function

Published online by Cambridge University Press:  17 March 2009

Thomas G. Ebrey
Affiliation:
Department of Physiology and Biophysics, University of Illinois Urbana, Illinois
Barry Honig
Affiliation:
Department of Physical Chemistry, The Hebrew University, Jerusalem, Israel

Extract

The description of the molecular processes which underlie visual excitation is the fundamental problem in understanding vision at the level of a single photoreceptor. Thus far only a general outline of photoreceptor function has emerged with little known about actual biochemical and biophysical mechanisms.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamson, E. W.Fager, R. S. (1973). The chemistry of vertebrate and invertebrate visual photoreceptors. Curr. Top. Bioenerg. 5, 125200.CrossRefGoogle Scholar
Alchalal, A., Honig, B., Ottolenghi, M. & Rosenefeld, T. (1975). The triplet sensitized cis–trans isomerization of the protonated Schiff base of retinal isomers. J. Am. chem. Soc. (in the Press.)CrossRefGoogle Scholar
Anderson, R. E. & Sperling, L. (1971). Positional distribution of the fatty acids in the phospholipids of bovine retina rod outer segments. Archs. Biochem. Biophys. 144, 673–7.Google Scholar
Applebury, M., Zuckerman, D., Lamola, A. & Jovin, T. (1974). Rhodopsin. Purification and recombination with phospholipids assayed by the Metarhodopsin I → Metarhodopsin II transition. Biochemistry, N.Y. 13, 3448–58.Google Scholar
Arden, G. (1969). The excitation of photoreceptors. Proc. Biophys. & Molec. Biol. 19, 179215.Google Scholar
Baker, P. F. & Willis, J. S. (1972). Binding of the cardiac glycoside ouabain to intact cells. J. Physiol. Lond. 224, 441462.CrossRefGoogle ScholarPubMed
Baumann, Ch. & Scheibner, H. (1968). The dark adaptation of single units in the isolated frog retina following partial bleaching of rhodospin. Vision Res. 8, 1127–38.Google Scholar
Baylor, D. A. & Fuortes, M. G. F. (1970). Electrical responses of single cones in the retina of the turtle. J. Physiol., Lond. 207, 7793.CrossRefGoogle ScholarPubMed
Baylor, D. & Hodgkin, A. (1974). Changes in time scale and sensitivity in turtle photoreceptors. J. Physiol., Lond. 242, 729758.CrossRefGoogle ScholarPubMed
Baylor, D., Hodgkin, A. & Lamb, T. (1974 a). The electrical response of turtle cones to flashes and steps of light. J. Physiol., Lond. 242, 685727.CrossRefGoogle ScholarPubMed
Baylor, D., Hodgkin, A. & Lamb, T. (1974 b). Reconstruction of the electrical responses of turtle cones to flashes and steps of light. J. Physiol., Lond. 242, 759791.CrossRefGoogle ScholarPubMed
Behbehani, M. & Srebro, R. (1974). Discrete waves and phototransduction in voltage-clamped ventral photoreceptors. J. gen. Physiol. 64, 186200.CrossRefGoogle ScholarPubMed
Bitensky, M. W., Gorman, R. E. & Miller, W. H. (1971). Adenyl cyclase as a link between photon capture and changes in membrane permeability of frog photoreceptors. Proc. natn. Acad. Sci. U.S.A. 68, 561–2.CrossRefGoogle ScholarPubMed
Blaise, J. K. (1972). The location of photopigment molecules in the cross section of frog retinal receptor disk membranes. Biophys. J. 12, 191204.Google Scholar
Blaise, J. K. & Worthington, C. R. (1969). Planar liquid-like arrangement of photopigment molecules in frog retinal receptor disk membranes. J. molec. Biol. 39, 417–39.Google Scholar
Blaise, J. K., Worthington, C. R. & Dewey, M. (1969). Molecular localization of frog retinal receptor photopigment by electron microscopy and low-angle X-ray diffraction. J. molec. Biol. 39, 407–16.Google Scholar
Blatz, P. E., Mohler, J. & Navangul, H. V. (1972). Anion-induced wavelength regulation of absorption maxima of Schiff bases of retinal. Biochemistry, N.Y. 11, 848–55.Google Scholar
Blaurock, A. E. & Wilkins, M. H. F. (1969). Structure of frog photoreceptor membranes. Nature, Lond. 223, 906–9.Google Scholar
Bonting, S. L. (1971). The mechanism of the visual process. Curr. Top. Bioenerg. 3, 351415.Google Scholar
Bonting, S. L., DeGrip, W. J., Rotmans, J. P. & Daemen, F. J. M. (1974). Use of photoreceptor membrane suspensions for the study of rhodopsin and associated enzyme activities. Expi. Eye Res. 18, 7788.Google Scholar
Borsellino, A. & Fuortes, M. G. F. (1968). Interpretation of responses of visual cells of Limulus. Proc. IEEE 56, 1024–32.CrossRefGoogle Scholar
Borsellino, A., Fuortes, M. G. F. & Smith, T. G. (1965). Visual responses in Limulus. Cold Spr. Harb. Symp. quart. Biol. 30, 429–43.Google Scholar
Boynton, R. & Whitten, D. (1970). Visual adaptation in monkey cones: Recordings of late receptor potentials. Science, N.Y. 170, 1423–6.Google Scholar
Bownds, D., Brodie, A., Robinson, W. E., Palmer, D., Miller, J. & Shedlovsky, A. (1974). Physiology and enzymology of frog photoreceptor membranes. Expl Eye. Res. 18, 253–69.Google Scholar
Bownds, D., Gordon-Walker, A., Gaide-Huguenin, A. C. & Robinson, W. (1971). Characterization and analysis of frog photoreceptor membranes. J. gen. Physiol. 58, 225–37.CrossRefGoogle ScholarPubMed
Bretscher, M. (1973). Membrane structure: Some general principles. Science, N.Y. 181, 622–9.Google Scholar
Brown, P. K. (1972). Rhodopsin rotates in the visual receptor membrane. Nature New Biol. 236, 35–8.Google Scholar
Brown, J. E. & Blinks, J. R. (1974). Changes in intracellular free calcium concentration during illumination of invertebrate photoreceptors: Detection with aequorin. J. gen. Physiol. 64, 643–65.CrossRefGoogle ScholarPubMed
Busch, G. E., Applebury, M. L., Lamola, A. A. & Rentzepis, P. M. (1972). Formation and decay of prelumirhodopsin at room temperature. Proc. natn. Acad. Sci. U.S.A. 69, 2802–6.CrossRefGoogle Scholar
Cassim, J., Rafferty, C. N. & McConnell, D. (1972). Ultraviolet circular dichroic studies on retinal photoreceptor outer segment membranes. Biophys. Soc. Abstr. 12, 205a.Google Scholar
Chader, G., Bensinger, R., Johnson, M. & Fletcher, R. (1974). Phosphodiesterase: An important role in cyclic nucleotide regulation in the retina. Expl Eye Res. 18, 483–6.Google Scholar
Chambre, M. & Cavaggioni, A. (1973). Light induced changes of ionic flux in the retinal rod. Nature New Biol. 244, 118120.CrossRefGoogle Scholar
Chan, W., Nakanishi, K., Ebrey, T. & Honig, B. (1974). Properties of 14-methylretinal, 13-desmethyl-14-methylretinal and visual pigments formed therefrom. J. Am. chem. Soc. 96, 3642–4.CrossRefGoogle ScholarPubMed
Chen, Y. S. & Hubbell, W. L. (1973). Temperature- and light-dependent structural changes in rhodopsin-liquid membranes. Expl Eye Res. 17, 517–32.CrossRefGoogle ScholarPubMed
Clark, A. & Branton, D. (1968). Fracture faces in frozen outer segments from the guinea pig retina. Z. Zellforsch mikrosk Anat. 91, 586603.Google Scholar
Cobbs, W. H. & Hagins, W. A. (1974). Are isolated frog rod outer segments light-sensitive osmometers? Fedn Proc. Fedn Am. Socs. exp. Biol. 33, 1576.Google Scholar
Cohen, A. (1972). Rods and cones. Handbook of Sensory Physiology, vol. VII/2, pp. 63110.CrossRefGoogle Scholar
Cone, R. A. (1972). Rotational diffusion of rhodopsin in the visual receptor membrane. Nature New Biol. 236, 3943.CrossRefGoogle ScholarPubMed
Cone, R. A. (1973). The internal transmitter model for visual excitation: Some quantitative implications. In Biochemistry and Physiology of Visual Pigments (ed. Langer, H.), pp. 275–84. New York: Springer-Verlag.Google Scholar
Cone, R. A. & Brown, P. K. (1967). Dependence of the early receptor potential on the orientation of rhodopsin. Science, N. Y. 156, 536.Google Scholar
Cone, R. A. & Pak, W. L. (1975). The early receptor potential. Handbook of Sensory Physiology, vol. I, 345365.Google Scholar
Crouch, R., Nakanishi, K. & Ebrey, T. (1975). Isorhodopsin II: The artificial photosensitive pigment formed from 9,13-dicis retinal. Proc. natn. Acad. Sci. U.S.A. (in the Press).CrossRefGoogle Scholar
Daemen, F. I. M. (1973). Vertebrate rod outer segment membranes. Biochem. biophys. Acta 300, 255–88.Google ScholarPubMed
Daemen, F. J. M., van Breugel, P. J. G. M. & Bonting, S. L. (1974). Enzyme treatment of photoreceptor membranes. Fedn Proc. Fedn Am. Socs exp. Biol. 33, 1575.Google Scholar
Daemen, F., Rotmans, J. & Bonting, S. (1974). On the rhodopsin cycle. Expl Eye Res. 18, 97104.Google Scholar
Dartnall, H. (1972). Photosensitivity. Handbook of Sensory Physiology, vol. VII/1, pp. 122–45.CrossRefGoogle Scholar
De Grip, W. J., Daemen, F. J. M. & Bonting, S. L. (1973). Biochemical aspects of the visual process. XXII. Amino group modification in bovine rod photoreceptor membranes. Biochem. biophys. Acta 323, 125–42.Google Scholar
Denton, E. J. (1959). The contributions of the oriented photosensitive and other molecules to the absorption of whole retina. Proc. R. Soc. Land. B 150, 7894.Google Scholar
Donner, K. & Reuter, T. (1967). Dark-adaptation processes in the rhodopsin rods of the frog's retina. Vision Res. 7, 1741.Google Scholar
Donner, K. & Reuter, T. (1968). Visual adaptation of the rhodopsin rods in the frog's retina. J. Physiol., Lond. 199, 5987.CrossRefGoogle Scholar
Dowling, J. (1960). Chemistry of visual adaptation in the rat. Nature, Land. 188, 114–18.CrossRefGoogle ScholarPubMed
Dowling, J. E. (1963). Neural and photochemical mechanisms of visual adaptation in the rat. J. gen. Physiol. 46, 1287–301.Google Scholar
Eakin, R. M. (1972). Structure of invertebrate photoreceptors. Handbook of Sensory Physiology, vol. VII/1, pp. 625–84.Google Scholar
Ebrey, T. G. (1968). The thermal decay of the intermediates of rhodopsin in situ. Vision Res. 8, 965–82.Google Scholar
Ebrey, T. G. (1971). Energy transfer in rhodopsin, N-retinyl-opsin and rod outer segments. Proc. natn. Acad. Sci. U.S.A. 68, 713–16.Google Scholar
Ebrey, T. G. (1972). The fluorescence from the tryptophans of rhodopsin. Photochem. & Photobiol. 15, 585–8.Google Scholar
Ebrey, T. G. & Honig, B. (1972). Ultraviolet chromophore transitions in the rhodopsin spectrum. Proc. natn. Acad. Sci. U.S.A. 69, 1897–9.CrossRefGoogle ScholarPubMed
Ebrey, T. G. & Hood, D. C. (1973). The effects of cyclic nucleotide phosphodiesterase inhibitors on the frog rod receptor potential. In Biochemistry and Physiology of Visual Pigements (ed. Langer, H.), pp. 341–50. New York: Springer-Verlag.Google Scholar
Eisinger, J. & Dale, R. (1974). Interpretation of intramolecular energy transfer experiments. J. molec. Biol. 84, 643–7.Google Scholar
Ernst, W. & Kemp, C. M. (1972). The effects of rhodopsin decompositon on P III responses of isolated rat retinae. Vision Res. 12, 1937–46.Google Scholar
Fein, A. (1974). Possible cellular mechanisms involved in visual excitation and adaptation. Assoc. Res. Vision Ophth. Abstr. p. 60.Google Scholar
Fein, A. & DeVoe, R. D. (1973). Adaptation in the ventral eye of Limulus is functionally independent of the photochemical cycle, membrane potential, and membrane resistance. J. gen. Physiol. 61, 273–89.Google Scholar
Frank, R. (1971). Properties of ‘neural’ adaptation in components of the frog electroretinogram. Vision Res. 11, 1113–23.Google Scholar
Frank, R. N. & Bensinger, R. E. (1974). Rhodopsin and light-sensitive kinase activity of retinal outer segments. Expl Eye Res. 18, 271–80.Google Scholar
Frank, R. & Dowling, J. (1968). Rhodopsin photoproducts: effects of electroretinogram sensitivity in isolated, perfused rat retina. Science, N.Y. 161, 487–9.CrossRefGoogle ScholarPubMed
Fuortes, M. G. F. & Hodgkin, A. L. (1964). Changes in the time scale and sensitivity in the ommatidia of Limulus. J. Physiol., Lond. 172, 239–63.Google Scholar
Fuortes, M. G. F. & O'Bryan, P. M. (1972). Generator potentials in invertebrate photoreceptors. Handbook of Sensory Physiology, vol. VII/2, pp. 279319.Google Scholar
Futterman, S. (1974). Recent studies on a possible mechanism for visual pigment regeneration. Expl Eye Res. 18, 8996.Google Scholar
Gilardi, R., Karle, I. L., Karle, J. & Sperling, W. (1971). Crystal structure of the visual chromophores, 11-cis and all-trans retinal. Nature, Lond. 232, 187–9.Google Scholar
Goldstein, E. B. (1967). Early receptor potential of the isolated frog retina. Vision Res. 7, 837–45.Google Scholar
Grabowski, S., Pinto, L. & Pak, W. (1972). Adaptation in retinal rods of Axoltl: Intracellular recordings. Science, N.Y. 176, 1240–3.CrossRefGoogle Scholar
Hagins, F. M. (1973). Purification and partial characterization of the protein component of squid rhodopsin. J. biol. Chem. 248, 3298–304.Google Scholar
Hagins, W. A. (1965). Electrical signs of information flow in photoreceptors. Cold. Spring Harb. Symp. quant. Biol. 30, 403–18.Google Scholar
Hagins, W. (1972). The visual process: Excitatory mechanisms in the primary receptor cells. A. Rev. Biophys. Bioeng. I, 131–58.Google Scholar
Hagins, W. A. & Jennings, W. H. (1957) Radiation migration of electronic excitation in retinal rods. Trans. Faraday Soc. 27, 180–90.Google Scholar
Hagins, W. & Yoshikami, S. (1974). A role for Ca2+ in excitation of retinal rods and cones. Expl Eye Res. 18, 299305.Google Scholar
Hamanaka, T., Mitsui, T., Ashida, T. & Kakudo, M. (1972). The crystal structure of all-trans retinal. Acta crystallogr. 28, 214–22.CrossRefGoogle Scholar
Hamdore, K., Paulsen, R. & Schwemer, J. (1973). Photoregeneration and sensitivity control of photoreceptors of invertebrates. In Biochemistry and Physiology of Visual Pigments (ed. Langer, H.), pp. 155–66. New York: Springer-Verlag.Google Scholar
Hara, T. & Hara, R. (1972). Cephalopod retinochrome. Handbook of Sensory Physiology, vol. VII/1, pp. 720–46.CrossRefGoogle Scholar
Harosi, F. I. & MacNichol, E. F. Jr. (1974). Visual pigments of goldfish cones. Spectral properties. J. gen. Physiol. 63, 279304.Google Scholar
Heitzmann, H. (1972). Rhodopsin is the predominant protein of rod outer segment membranes. Nature New Biol. 235, 114.Google Scholar
Heller, J. & Lawrence, M. A. (1970). Structure of the glycopeptide from bovine visual pigment 500. Biochemistry, N.Y. 9, 864–9.Google Scholar
Hillman, P., Dodge, F., Hochsstein, S., Knight, B. & Minke, B. (1973). Rapid dark recovery of invertebrate early receptor potential. J. gen. Physiol. 62, 7786.CrossRefGoogle ScholarPubMed
Hodgkin, A. L. (1972). Address of the President at the Anniversary Meeting, 30 11 1971. Proc. R. Soc. Lond., B 180, v–xx.Google ScholarPubMed
Hokin, L., Dahl, J., Deupree, J., Dixon, J., Hackney, J. & Perdue, J. (1973). Studies on the characterization of the sodium-potassium transport adenosine triphosphate. X. Purification of the enzyme from the rectal bland of Squalus acanthias. J. biol. Chem. 248, 2593–605.CrossRefGoogle Scholar
Hong, K. & Hubbell, W. L. (1972). Preparation and properties of phospholipid bilayers containing rhodopsin. Proc. natn. Acad. Sci. U.S.A. 69, 2617–21.CrossRefGoogle ScholarPubMed
Hong, K. & Hubbell, W. (1973). Lipid requirements of rhodopsin regenerability. Biochemistry, N.Y. 12, 4517–23.Google Scholar
Honig, B. & Ebrey, T. G. (1974). The structure and spectra of the chromophore of the visual pigments. A. Rev. Biophys. Bioeng. 3, 151–77.Google Scholar
Honig, B., Hudson, B. S., Sykes, B. D. & Karplus, M. (1971). Ring orientation in β-ionone and retinals. Proc. natn. Acad. Sci. U.S.A. 68, 1289–93.Google Scholar
Honig, B., Kahn, P. & Ebrey, T. G. (1973). Intrinsic optical activity of retinal isomers. Implications for the circular dichroism spectrum of rhodopsin. Biochemistry, N.Y. 12, 1637–43.CrossRefGoogle ScholarPubMed
Honig, B. & Karplus, M. (1971). Implications of torsional potential of retinal isomers for visual excitation. Nature, Lond., 229, 558–60.Google Scholar
Honig, B., Warshel, A. & Karplus, M. (1975). Theoretical studies of the visual chromophore. Accts. Chem. Res. (in the Press).Google Scholar
Hood, D. & Ebrey, T. (1974). On the possible role of cAMP in receptor dark adaptation. Vision Res. 14, 437–40.Google Scholar
Hood, D. C., Hock, P. A. & Grover, B. C. (1973). Dark adaptation of the frog's rods. Vision Res. 13, 1953–63.Google Scholar
Huang, H., Molday, R. & Dreyer, W. (1973). Isoelectric focusing of rod outer segment membrane proteins. FEBS Lett. 37, 285–90.Google Scholar
Hubbard, R. (1954). The molecular weight of rhodopsin and the nature of the rhodopsin-digitonin complex. J. gen. Physiol. 37, 381–99.CrossRefGoogle ScholarPubMed
Hubbard, R. (1969). Absorption spectrum of rhodopsin: 500 nm absorption band. Nature, Lond. 221, 432–5.Google Scholar
Hubbard, R. & Sperling, L. (1973). The colors of the visual pigment chromophores. Expl Eye Res. 17, 581–9.CrossRefGoogle ScholarPubMed
Hubbard, R. & Wald, G. (1952). Cis-trans isomers of vitamin A and retinene in the rhodopsin system. J. gen. Physiol. 36, 269307.Google Scholar
Hudson, B. & Kohler, B. (1972). A low-lying weak transition in the polyene α, ω-diphenyl octatetraene. Chem. Phys. Letters 14, 299304.CrossRefGoogle Scholar
Jan, L. Y. & Revel, J. P. (1974). Ultrastructural localization of rhodopsin in the vertebrate retina. J. Cell. Biol. 62, 252–73.Google Scholar
King-Smith, P. E. (1974). The Stiles-Crawford effect and wave guide modes: An explanation of MacLeod's paradox in terms of local adaptation within outer segments. Vision Res. 14, 593–5.CrossRefGoogle ScholarPubMed
Korenbrot, J. I. & Cone, R. A. (1972). Dark ionic flux and the effects of light in isolated rod outer segments. J. gen. Physiol. 60, 2045.Google Scholar
Kropf, A. & Hubbard, R. (1970). The photoisomerization of retinal. Photochem. & Photobiol. 12, 249–60.Google Scholar
Kropf, A., Whittenberger, B. P., Goff, S. P. & Waggoner, A. S. (1973). The spectral properties of some visual pigment analogs. Expl Eye Res. 17, 591606.CrossRefGoogle ScholarPubMed
Kuhn, M. (1974). Light-dependent phosphorylation of rhodopsin in living frogs. Nature, Lond. 250, 588–90.Google Scholar
Kuhn, M., Cook, J. & Dreyer, W. (1973). Phosphorylation of rhodopsin in bovine photoreceptor membranes. A dark reaction after illumination. Biochemistry, N.Y. 12, 2495–502.Google Scholar
Lamola, A., Yamane, T. & Zipp, A. (1974) Effects of detergents and high pressures upon the Metarhodopsin I ⇄ Metarhodopsin II equilibrium. Biochemistry, N. Y. 13, 738–45.Google Scholar
Levinson, J. Z. (1972). Interpretation of generator potentials. Handbook of Sensory Physiology, vol. VII/2, pp. 339–56.Google Scholar
Lewis, A., Fager, R. & Abrahamson, E. (1973). Tunable laser resonance raman spectroscopy of the visual process. I. The spectrum of rhodopsin. J. Raman Spect. I, 465–70.Google Scholar
Liebman, P. A. (1972). Microspectrophotometry of photoreceptors. Handbook of Sensory Physiology. vol. VII/1, pp. 481528.CrossRefGoogle Scholar
Liebman, P. A. & Entine, G. (1974). Lateral diffusion of visual pigment in photoreceptor disk membranes. Science, N.Y. 185, 457–59.CrossRefGoogle Scholar
Liebman, P., Jagger, J., Kaplan, M. & Bargoot, F. (1974). Membrane structure changes in rod outer segments associated with rhodopsin bleaching. Nature, Lond. 251, 31–6.Google Scholar
Lisman, J. & Brown, J. (1972). The effects of intracellular Ca2+ on the light response and on light adaptation in Limulus ventral photoreceptors. In The Visual System (ed. Arden, G.), pp. 2333. New York: Plenum Press.Google Scholar
Litman, B. J. & Smith, H. G. Jr. (1974). The determination of molecular asymmetry in mixed phospholipid vesicles and bovine retinal rod outer segment disk membranes. Fedn Proc. Fedn Am. Socs exp. Biol. 33, 1575.Google Scholar
Mason, W., Fager, R. & Abrahamson, E. (1973). Characterization of the lipid composition of squid rhabdomere outer segments. Biochim. Biophys. Acta 306, 6773.CrossRefGoogle Scholar
Matsumoto, H., Tokunaga, F. & Yoshizawa, T. (1974). Accessibility of the iodopsin chromophore. Nature, Lond. (in the Press).Google Scholar
McDowell, J. H. & Williams, T. P. (1974). The oxidation states of the sulfurs of rhodopsin. Assoc. Res. Vision Ophth. Abstr. p. 17.Google Scholar
McReynolds, J. & Gorman, A. (1974). Ionic basis of hyperpolarizing receptor potential in scallop eye: Increase in permeability to potassium ions. Science, N.Y. 183, 658–9.Google Scholar
Miki, N., Keirns, J. S., Marcus, F. R., Freeman, J. & Bitensky, M. W. (1973). Regulation of cyclic nucelotide concentrations in photoreceptors: An ATP-dependent stimulation of cyclic nucleotide phosphodiesterase by light. Proc. natn. Acad. Sci. U.S.A. 70, 3820–4.Google Scholar
Moody, M. (1964). Photoreceptor organelles in animals. Biol. Rev. 39, 4386.Google Scholar
Norman, R. & Werblin, F. (1974). Control of retinal sensitivity. I. Light and dark adaptation of vertebrate rods and cones. J. gen. Physiol. 63, 3761.Google Scholar
Oseroff, A. & Callender, R. (1974). Resonant raman spectroscopy of rhodopsin in retinal disk membranes. Biochemistry, N.Y. 13, 4243–8.Google Scholar
Ostwald, T. J. & Heller, J. (1972). Properties of magnesium- or calcium- dependent adenosine triphosphatase from frog rod photoreceptor outer segment disks and its inhibition by illumination. Biochemistry, N. Y. 11, 4679–86.Google Scholar
Pannbacker, R. (1973). Control of guanylate cyclase activity in the rod outer segment. Science, N.Y. 182, 1138–40.Google Scholar
Pannbacker, R. G., Fleischman, D. E. & Reed, D. W. (1972). Cyclic nucleotide phosphodiesterase: High activity in mammalian photoreceptor. Science, N.Y. 175, 757–8.Google Scholar
Pannbacker, R. & Schoch, D. (1973). Protein kinases of the rod outer segment. J. gen. Physiol. 61, 257.Google Scholar
Patel, D. (1969). 220 MHz proton nuclear magnetic resonance spectra of retinals. Nature, Lond. 221, 825–8.Google Scholar
Penn, R. D. & Hagins, W. A. (1972). Kinetics of the photocurrent of retinal rods. Biophys. J. 12, 1073–94.Google Scholar
Pitt, G. A. J., Collins, F. D., Morton, R. A. & Stok, P. (1955). Studies on rhodopsin. 8. Retinylidenemethylamine, an indicator yellow analogue. Biochem. J. 59, 122–8.CrossRefGoogle Scholar
Poo, M. & Cone, R. (1974). Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature, Lond., 247, 438–41.Google Scholar
Raubach, R. A., Nemes, P. P. & Dratz, E. A. (1974). Chemical labelling and freeze-fracture studies on the localization of rhodopsin in the rod outer segment disk membrane. Expl Eye Res. 18, 111.CrossRefGoogle ScholarPubMed
Renthal, R., Steinemann, A. & Stryer, L. (1973). The carbohydrate moiety of rhodopsin: Lectin-bindings. chemical modification, and fluorescence studies. Expl Eye Res. 17, 511–15.Google Scholar
Robinson, W., Gordon-Walker, A. & Bownds, D. (1972). Molecular weight of frog rhodopsin. Nature, Lond. 235, 112–14.Google Scholar
Rodieck, R. (1973). The Vertebrate Retina. San Francisco: W. H. Freeman.Google Scholar
Rosenfeld, T., Alchalal, A. & Ottolenghi, M. (1972). Nanosecond laser photolysis of rhodopsin in solution. Nature, Lond. 240, 482–3.CrossRefGoogle ScholarPubMed
Rosenfield, T., Alchalel, A. & Ottolenghi, M. (1974). Intersystem crossing, ionic dissociation and cis-trans isomerization mechanisms in the photolysis of retinol and related molecules. Int. Cong. on the Excited States of Biol. Mol. Lisbon, 1974 (in the Press).Google Scholar
Rowan, R., Warshel, A., Sykes, B. D. & Karplus, M. (1974). Conformation of retinal isomers. Biochemistry, N.Y. 13, 970–80.Google Scholar
Rushton, W. A. H. (1963). Effect of instantaneous flashes on adaptation of the eye. Nature, Lond. 199, 971–2.Google Scholar
Saari, J. C. (1974). The accessibility of bovine rhodopsin in photoreceptor membranes. J. Cell. Biol. 63, 480–91.Google Scholar
Schmidt, W. (1935). Die Lamellardoppelbrechung des Aussengliedes der Sehzellen vom Frosch, nachgewiessen an Schnitten. Zool. Anz. 109, 245–51.Google Scholar
Schulten, K. & Karplus, M. (1972). On the origin of a low-lying forbidden transition in polyenes and related molecules. Chem. Phys. Letters. 14, 305–9.Google Scholar
Shichi, H. (1971 a). Biochemistry of visual pigments. II. Phospholipid requirement and opsin conformation for regeneration of bovine rhodopsin. J. biol. Chem. 246, 6178–82.Google Scholar
Shichi, H. (1971 b). Circular dichroism of bovine rhodopsin. Photochem. & Photobiol. 13, 499502.Google Scholar
Shichi, H. (1973). Conformational aspects of rhodopsin associated with disk membranes. Expl Eye Res. 17, 533–43.Google Scholar
Srebro, R. & Behbehani, M. (1974). Light adaptation in the ventral photoreceptor of Limulus. J. gen. Physiol. 64, 166–8.Google Scholar
Steinemann, A. & Stryer, L. (1973). Accessibility of the carbohydrate moiety of rhodopsin. Biochemistry, N. Y. 12, 1499–502.Google Scholar
Stieve, H. (1973). Experiments on the ionic mechanism of the receptor potential of Limulus and crayfish photoreceptor. In Biochemistry and Physiology of Visual Pigments (ed. Langer, H.), pp. 237244. New York: Springer-Verlag.Google Scholar
Strackee, L. (1971). Rotational diffusion of rhodopsin-digitonin micelles studied by transient photodichroism. Biophys. J. 11, 728738.Google Scholar
Suzuki, M., Komatsu, T. & Kitajima, H. (1974). Theory of the optical properties of visual pigments. J. Phys. Soc. Japan 37, 177–85.Google Scholar
Takagi, M. (1963). Studies on the ultraviolet spectral displacements of cattle rhodopsin. Biochim. biophys. Acta 66, 328–40.Google Scholar
Tomita, T. (1972). Light-induced potential and resistance changes in vertebrate photoreceptors. Handbook of Sensory Physiology, vol. VII/2, pp. 483511.Google Scholar
Trayhurn, P., Mandel, P. & Virmaux, N. (1974). Removal of a large fragment of rhodopsin without changes in its spectral properties by proteolysis of retinal rod outer segments. FEBS Letters 38, 351–3.Google Scholar
Verma, S., Berliner, L. & Smith, I. (1973). Cation-dependent light-induced structural changes in visual receptor membranes. Biochem. biophys. Res. Commun. 55, 704–9.Google Scholar
Waddell, W. & Becker, R. (1971). The hydrogen-bonded (protonated) Schiff base of all-trans-retinal. J. Am. chem. Soc. 93, 3788–9.Google Scholar
Wald, G. (1968). The molecular basis of visual excitation. Nature, Lond. 219, 800–7.Google Scholar
Waterman, T. H., Fernandez, H. R. & Goldsmith, T. A. (1969). Dichroism of photosensitive pigments in rhabdomeres of the crayfish Orconectes. J. gen. Physiol. 54, 415–32.Google Scholar
Worthington, C. R. (1974). Structure of photoreceptor membranes. A. Rev. Biophys. Bioeng. 3, 5380.Google Scholar
Wright, A. K. (1974). Ellipsoid models for rotational diffusion of rhodopsin in a digitonin micelle and in the visual receptor membrane. Biophys. J. 14, 243–5.Google Scholar
Wright, W., Brown, P. K. & Wald, G. (1973). Orientation of intermediates in the bleaching of shear-oriented rhodopsin. J. gen. Physiol. 62, 509–22.Google Scholar
Wu, C.-W. & Stryer, L. (1972). Proximity relations in rhodopsin. Proc. natn. Acad. Sci. U.S.A. 69, 1104–8.Google Scholar
Yoshikami, S. & Hagins, W. A. (1971). Light, calcium, and the photo- current of rods and cones. Biophys. Soc. Abstr. 11, 47a.Google Scholar
Yoshikami, S. & Hagins, W. A. (1973). Control of the dark current in vertebrate rods and cones. In Biochemistry and Physiology of Visual Pigments (ed. Langer, H.), pp. 245–56.CrossRefGoogle Scholar
Yoshizawa, T. & Wald, G. (1963). Prelumirhodopsin and the bleaching of visual pigments. Nature, Lond. 197, 1279–86.CrossRefGoogle ScholarPubMed
Young, R. W. (1974). Biogenesis and renewal of visual cell outer segment membranes. Expl Eye Res. 18, 215–23.Google Scholar
Zimmerman, W., Yost, M. & Daemen, F. (1974). Dynamics and function of vitamin A compounds in the rat retina after a small bleach of rhodopsin. Nature, Lond. 250, 66–7.Google Scholar
Zorn, M. & Futterman, S. (1971). Properties of rhodopsin dependent on associated phospholipid. J. biol. Chem. 246, 881–6.Google Scholar