Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-16T09:29:53.192Z Has data issue: false hasContentIssue false

Voltage clamp and tracer flux data: effects of a restricted extra-cellular space

Published online by Cambridge University Press:  17 March 2009

David Attwell
Affiliation:
University Laboratory of Physiology, Parks Road, Oxford, England, and Department of Physiology & Biophysics, SUNY at Stony Brook, NY 11794, U.S.A.
David Eisner
Affiliation:
University Laboratory of Physiology, Parks Road, Oxford, England, and Department of Physiology & Biophysics, SUNY at Stony Brook, NY 11794, U.S.A.
Ira Cohen
Affiliation:
University Laboratory of Physiology, Parks Road, Oxford, England, and Department of Physiology & Biophysics, SUNY at Stony Brook, NY 11794, U.S.A.

Extract

In the original Hodgkin & Huxley analysis of the membrane currents in squid giant axon, the time dependence of the currents was attributed to voltage-dependent changes in the permeability of the membrane to the ions involved. According to this theoretical framework, the time constants for the rate of change of current should be unique functions of the membrane potential, and should be independent of the previous history of the voltage and current flowing. In recent years, however, there has been increasing awareness of the fact that, for many physiological preparations, the space just outside the cell membrane is not in good diffusive contact with the bulk extra-cellular fluid perfusing the preparation. Consequently, when current flows across the cell membrane, there are changes in the ion concentrations in this so-called ‘restricted extra-cellular space’ (RECS).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Almers, W. (1972). The decline of potassium permeability during extreme hyperpolarization in frog skeletal muscle. J. Physiol., Lond. 225, 5783.CrossRefGoogle ScholarPubMed
Aronson, R. S. & Gelles, J. M. (1977). The effect of ouabain, dinitrophenol, and lithium on the pacemaker current in sheep cardiac Purkinje fibres. Circulation Res. 40, 517524.CrossRefGoogle Scholar
Attwell, D. & Cohen, I. (1977). The voltage clamp of multi-cellular preparations. Prog. Biophys. & molec. Biol. 31, 201245.CrossRefGoogle Scholar
Attwell, D., Cohen, I. & Eisner, D. A. (1979). Membrane potential and ion concentration stability conditions for a cell with a restricted extra cellular space. Proc. R. Soc. B (in the Press).Google Scholar
Baumgarten, C. M. & Isenberg, G. (1977). Depletion and accumulation of potassium in the extra-cellular spaces of cardiac Purkinje fibres during voltage clamp hyperpolarization and depolarization. Pflügers Arch. ges. Physiol. 368, 1931.CrossRefGoogle Scholar
Beeler, G. W. & Reuter, H. (1970 a). Voltage clamp experiments on ventricular fibres. J. Physiol., Lond. 207, 165190.CrossRefGoogle Scholar
Beeler, G. W. & Reuter, H. (1970 b). Membrane calcium current in ventricular myocardial fibres. J. Physiol., Lond. 207, 191209.CrossRefGoogle ScholarPubMed
Brown, H. F., Clark, A. & Noble, S. J. (1976a). Identification of the pacemaker current in frog atrium. J. Physiol., Lond. 258, 521545.CrossRefGoogle ScholarPubMed
Brown, H. F., Clark, A. & Noble, S. J. (1976b). Analysis of pacemaker and repolarization currents in frog atrial muscle. J. Physiol., Lond. 258, 547577.CrossRefGoogle ScholarPubMed
Brown, H. F., Giles, W. & Noble, S. J. (1977). Membrane currents underlying activity in frog sinus venosus. J. Physiol., Lond. 271, 783816.CrossRefGoogle ScholarPubMed
Carmeliet, E. & Verdonck, F. (1977). Reduction of potassium permeability by chloride substitution in cardiac cells. J. Physiol., Lond. 265, 193206.CrossRefGoogle ScholarPubMed
Carmeliet, E., Horres, C. R., Lieberman, M. & Vereecke, J. S. (1976). Developmental aspects of potassium flux and permeability of the embryonic chick heart. J. Physiol., Lond. 254, 673692.CrossRefGoogle ScholarPubMed
Cohen, I., Daut, J. & Noble, D. (1976 a). The effects of potassium and temperature on the pacemaker current, iK2, in Purkinje fibres. J. Physiol., Lond. 260, 5574.CrossRefGoogle ScholarPubMed
Cohen, I., Daut, J. & Noble, D. (1976 b). An analysis of the actions of low concentrations of ouabain on membrane currents in Purkinje fibres. J. Physiol., Lond. 260, 75103.CrossRefGoogle ScholarPubMed
Colatsky, T. J. & Tsien, R. W. (1979). Electrical properties associated with wide intercellular clefts in rabbit Purkinje fibres. J. Physiol. (in the Press).CrossRefGoogle Scholar
Connor, J., Barr, L. & Jakobsson, E. (1975). Electrical characteristics of frog atrial trabeculae in the double sucrose gap. Biophys. J. 15, 10471068.CrossRefGoogle ScholarPubMed
Dubois, J. M. & Bergman, C. (1975). Potassium accumulation in the perinodal space of frog myelinated axons. Pflügers Arch. ges. Physiol. 358, 111124.CrossRefGoogle ScholarPubMed
Dudel, J. & Rüdel, R. (1970). Voltage and time dependence of excitatory sodium current in cooled sheep Purkinje fibres. Pflügers Arch. ges. Physiol. 315, 136158.CrossRefGoogle ScholarPubMed
Frank, J. S. & Langer, G. A. (1974). The myocardial interstitium: its structure and its role in ion exchange. J. Cell. Biol. 60, 586601.CrossRefGoogle Scholar
Frankenhaeuser, B. & Hodgkin, A. L. (1956). The after effects of impulses in the giant nerve fibres of Loligo. J. Physiol., Lond. 131, 341376.CrossRefGoogle ScholarPubMed
Gadsby, D. C. & Cranefield, P. F. (1979). Direct measurement of changes in sodium pump current in canine cardiac Purkinje fibres. Proc. natn. Acad. Sci. U.S.A. 76, 17831787.CrossRefGoogle Scholar
Gelles, J. M. & Aronson, R. S. (1977). Voltage clamp analysis of the effects of dopamine on the transmembrane ionic currents underlying the action potential of sheep Purkinje fibres. Circulation Res. 40, 561566.CrossRefGoogle Scholar
Haas, H. G., Glitsch, H. G. & Keen, R. (1966). Kalium-Fluxe und Membranpotential am Froschvorhof in Abhängigkeit von der Kalium Aussenkonzentration. Pflügers Arch. ges. Physiol. 288, 4364.CrossRefGoogle Scholar
Hauswirth, O., Noble, D. & Tsien, R. W. (1972). Separation of the pacemaker and plateau components of delayed rectification in cardiac Purkinje fibres. J. Physiol., Lond. 225, 211235.CrossRefGoogle ScholarPubMed
Haydon, D. A. & Hladky, S. B. (1972). Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems. Q. Rev. Biophys. 5 187282.CrossRefGoogle ScholarPubMed
Hellam, D. C. & Studt, J. W. (1974). A core conduction model of the cardiac Purkinje fibre based on structural analysis. J. Physiol., Lond. 243, 637660.CrossRefGoogle ScholarPubMed
Hodgkin, A. L. & Horowicz, P. (1960). The effect of sudden changes in ionic concentrations on the membrane potential of single muscle fibres. J. Physiol., Lond. 153, 370385.CrossRefGoogle ScholarPubMed
Hodgkin, A. L. & Huxley, A. F. (1952). The components of membrane conductance in the giant axon of Loligo. J. Physiol., Lond. 116, 473496.CrossRefGoogle ScholarPubMed
Hodgkin, A. L. & Keynes, R. D. (1955). The potassium permeability of a giant nerve fibre. J. Physiol., Lond. 128, 6188.CrossRefGoogle ScholarPubMed
Huxley, A. F. (1960). In Mineral Metabolism, vol. I, part A (ed. Comar, C. L. and Bronner, F.), pp. 163166. London: Academic Press.Google Scholar
Isenberg, G. (1977). Cardiac Purkinje fibres. [Ca]1 controls the potassium permeability via the conductance components gK1 and gk2 Pflügers Arch. ges. Physiol. 371, 7785.CrossRefGoogle Scholar
Johnson, E. A. & Lieberman, M. (1971). Heart: excitation and contraction. A. Rev. Physiol. 33, 479532.CrossRefGoogle ScholarPubMed
Keenan, M. J. & Niedergerke, R. (1967). Intracellular sodium concentration and resting sodium fluxes of the frog's heart ventricle. J. Physiol., Lond. 188, 235260.CrossRefGoogle Scholar
Keynes, R. D. (1954). The ionic fluxes in frog muscle. Proc. R. Soc. B 142 359382.Google ScholarPubMed
Keynes, R. D. & Swan, R. C. (1959). The effect of external sodium concentration on the sodium fluxes in frog skeletal muscle. J. Physiol., Lond. 147, 591625.CrossRefGoogle ScholarPubMed
Kline, R. & Morad, M. (1976). Potassium efflux and accumulation in heart muscle. Evidence from K+ electrode studies. Biophys. J. 16, 367372.CrossRefGoogle ScholarPubMed
Kootsey, J. M. & Johnson, E. A. (1972). Voltage clamp of cardiac muscle. A theoretical analysis of early currents in the single sucrose gap. Biophys. J. 12, 14961508.CrossRefGoogle ScholarPubMed
Lamb, J. F. & McGuigan, J. A. S. (1968). The efflux of sodium, potassium, chloride, calcium and sulphate ions and of sorbitol and glycerol during the cardiac cycle in frog ventricle. J. Physiol., Lond. 195 283315.CrossRefGoogle Scholar
Langer, G. A. & Brady, A. J. (1966). Potassium in dog ventricular muscle: kinetic studies of distribution and effects of varying frequency of contraction and potassium concentration of perfusate. Circulation Res. 18, 164177.CrossRefGoogle Scholar
Langer, G. A. & Serena, D. (1970). Effects of strophanthidin upon contraction and ionic exchange in rabbit ventricular myocardium: Relation to control of active state. J. mol. cen. Cardiol. 1, 6590.CrossRefGoogle ScholarPubMed
MacDonald, R. L., Mann, J. E. & Sperelakis, N. (1974). Derivation of general equations describing tracer diffusion in any two compartment tissue with application to ionic diffusion in cylindrical muscle bundles. J. theor. Biol. 45, 107130.CrossRefGoogle ScholarPubMed
McNaughton, P. A. (1974). Ionic conductances in cardiac Purkinje fibres and their control by adrenaline. D.Phil. thesis, Oxford.Google Scholar
Maughan, D. N. (1973). Some effects of prolonged depolarization on membrane currents in bullfrog atrial muscle. J. Membrane Biol. 11, 331352.CrossRefGoogle Scholar
Niedergerke, R. (1963). Movements of Ca in beating ventricles of the frog heart. J. Physiol., Lond. 167, 551–80.CrossRefGoogle ScholarPubMed
Noble, D. (1965). Electrical properties of cardiac muscle attributable to inward-going (anomalous) rectification. J. cell. camp. Physiol. 66, suppl. 2, 127136.Google Scholar
Noble, S. J. (1976). Potassium accumulation and depletion in frog atrial muscle. J. Physiol., Lond. 258, 579613.CrossRefGoogle ScholarPubMed
Noble, D. & Tsien, R. W. (1968). The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres. J. Physiol., Lond. 195, 185214.CrossRefGoogle ScholarPubMed
Noble, D. & Tsien, R. W. (1969). Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J. Physiol., Lond. 200, 205231.CrossRefGoogle ScholarPubMed
Page, S. G. & Niedergerke, R. (1972). Structures of physiological interest in the frog heart ventricle. J. Cell Sci. 11, 179203.CrossRefGoogle ScholarPubMed
Poole-Wilson, P. A. & Langer, G. A. (1975). Glycoside inotropy in the absence of an increase in potassium efflux in the rabbit heart. Circulation Res. 37, 390395.CrossRefGoogle ScholarPubMed
Reuter, H. & Scholz, H. (1977). A study of the ion selectivity and the kinetic properties of the calcium dependent slow inward current in mammalian cardiac muscle. J. Physiol., Lond. 264, 1747.CrossRefGoogle ScholarPubMed
Robinson, R. A. & Stokes, R. H. (1959). Electrolyte Solutions, 2nd edition. London: Butterworth.Google Scholar
Shine, K. I., Serena, D. & Langer, G. A. (1971). Kinetic localization of contractile calcium in rabbit myocardium. Am. J. Physiol. 221, 14081417.CrossRefGoogle ScholarPubMed
Solomon, A. K. (1960). In Mineral Metabolism, voi. i, part A (ed. Comar, C. L. and Bronner, F.), pp. 118167. London: Academic Press.Google Scholar
Weidmann, S. (1956). Shortening of the cardiac action potential due to a brief injection of KC1 following the onset of activity. J. Physiol., Lond. 132, 157163.CrossRefGoogle Scholar
Winne, D. (1977). Correction of the apparent Michaelis constant, biased by an unstirred layer, if a passive transport component is present. Biochim. biophys. Acta 464, 118126.CrossRefGoogle Scholar