Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-16T23:01:43.190Z Has data issue: false hasContentIssue false

New Paths in the Molecular Orbital Approach to Solvation of Biological Molecules

Published online by Cambridge University Press:  17 March 2009

Alberte Pullman
Affiliation:
Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild 13, rue P. et M. Curie, 75005, Paris
Bernard Pullman
Affiliation:
Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild 13, rue P. et M. Curie, 75005, Paris

Extract

This review is devoted to the presentation of recent developments in a field of theoretical molecular biophysics which seem to open large possibilities for progress in a hitherto relatively unexplored although very important direction. It is concerned with the establishment of a new methodology in the molecular orbital approach to the problem of the solvation of biological molecules. The methodology is still in an initial stage, susceptible of many refinements and its practical applications may also be considered as being in their beginnings. Nevertheless the successes obtained so far and the interest which they aroused in a number of laboratories incite us to present already now the general principles and the available results so as to offer a possibility of evaluating the advantages, present-day limitations and future potentialities of the procedure, which could then be explored by all those interested. This review may thus be said to be to a large extent oriented towards the future, with the acknowledged aim of producing an acceleration and widening of researches in this field. Possible progress in this respect is interesting from a double point of view.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alagona, G., Pullman, A., Scrocco, E. & Tomas, J. (1973). Quantum- mechanical studies of environmental effects on biomolecules. I. Hydration of formamide. Int. J. Peptide Protein Res. 5, 251.CrossRefGoogle ScholarPubMed
Ariëns, E. J., Simonis, A. M. & Van Rossum, (1964). Molecular Pharmacology, vol. I (ed. Ariëns, E. I.), p. 169. New York, Academic Press.Google Scholar
Avignon, M., Garrigou-Lagrange, C. & Bothorel, P. (1973). Conformational analysis of dipeptides in aqueous solution. II. Molecular structure of glycine and alanine dipeptides by depolarized Rayleigh scattering and laser Raman spectroscopy. Biopolymers 12, 1651.CrossRefGoogle ScholarPubMed
Berthod, H. & Pullman, A. (1972). Ab initio studies of hydrogen bonding between peptide units. IV. The mutual orientations of the peptide planes. Chem. Phys. Letters 14, 217.CrossRefGoogle Scholar
Beveridge, D. L. (1974). Theoretical studies of solvent effects on the conformation of cholinergic and adrenergic natural agonists. In Molecular and Quantum Pharmacology (ed. Bergmann, E. D. and Pullman, B.). Dordrecht, Holland: Reidel Publishing Company (p. 153).CrossRefGoogle Scholar
Breuer, M. M. (1964). Binding of phenols by hair. J. Phys. Chem., Ithaca 68, 2067.CrossRefGoogle Scholar
Breuer, M. M. & Kennerley, M. G. (1971). The hydration of synthetic polypeptides. J. Colloid & Interface Sci. 37, 124.CrossRefGoogle Scholar
Bonaccorsi, R., Peterongolo, C., Scrocco, E. & Tomasi, J. (1971). Theoretical investigations on the solvation process. I. A simple model for the dimeric water associate. Theor. Chim. Acta 20, 331.CrossRefGoogle Scholar
Carlström, D., Bergin, R. & Falkenberg, G. (1973). Molecular characteristics of biogenic monoamines and their analogs. Q. Rev. Biophys. 6,257.CrossRefGoogle ScholarPubMed
Cung, M. T., Marraud, M. & Néel, J. (1973). Experimental study of the conformation of ‘dipeptides’. In Conformation of Biological Molecules and Polymers (ed. Bergmann, E. D. and Pullman, B.), p.69. New York:Academic Press.Google Scholar
Diercksen, G. (1971). SCF-MO-LCCO studies on hydrogen bonding. The water dimer. Theor. Chim. Acta 21, 335.CrossRefGoogle Scholar
Diner, S., Malrieu, J. P., Jordan, F. & Gilbert, M. (1969). Localized bond orbitals and the correlation problem. Theor. Chim. Acta 15, 100.CrossRefGoogle Scholar
Ditchfield, R., Hehre, W. J. & Pople, J. A. (1971). Self-consistent molecular orbital methods. IX. An extended Gaussian-type basis for molecular orbital studies of organic molecules. J. chem. Phys. 54, 724.CrossRefGoogle Scholar
Dreyfus, M. & Pullman, A. (1970). A non-empirical study of the hydrogen bond between peptide units. Theor. Chim. Acta 19, 20.CrossRefGoogle Scholar
Einspahr, H. & Bugg, C. E. (1974). Calcium binding to α-amino acids: Crystal structure of calcium L-glutamate trihydrate. Acta crystallogr.B 30, 1037.CrossRefGoogle Scholar
Falkenberg, G. (1972). The molecular structure of some psychoactive indolealkylamines and related substances. Thesis. Karolinska Institutet, Stockholm.Google Scholar
Fraenkel, G. & Kim, J. P. (1966). Solvation of anilinium salts. J. Am. chem. Soc. 88, 4203.CrossRefGoogle Scholar
Ganellin, C. R., Port, G. N. J. & Richards, W. G. (1973). Conformation of substituted histamines in relation to pharmacological activity. In Conformation of Biological Molecules and Polymers (ed. Bergmann, E. D. and Pullman, B.), p. 579. New York: Academic Press.Google Scholar
Gopal, R. & Siddiqi, M. A. (1968). The variation of partial molal volume of some tetraalkylammonium iodides with temperature in aqueous solutions. J. Phys. Chem., Ithaca 72, 1814.CrossRefGoogle Scholar
Ham, N. S., Casy, A. F. & Ison, R. R. (1973). Solution conformations of histamine and some related derivatives. J. Med. Chem. 16, 470.CrossRefGoogle ScholarPubMed
Hankins, D., Moskowitz, J. & Stillinger, F. (1970). Water molecule interactions. J. chem. Phys. 53, 4544.CrossRefGoogle Scholar
Hehre, W. G., Stewart, R. F. & Pople, J. A. (1969). Self-consistent molecular orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals. J. chem. Phys. 51, 2657.CrossRefGoogle Scholar
Hnojewyj, W. S. & Reyerson, L. H. (1963). Absorption of water and ammonia by poly L-glutanuc acid. J. Phys. Chem., Ithaca 67, 711, 67, 1945.CrossRefGoogle Scholar
Hopfinger, A. J. (1974). Solvent-dependent conformational studies of acetylcholine and related molecules. In Molecular and Quantum Pharmacology (ed. Bergmann, E. D. and Pullman, B.). Dordrecht, Holland: Reidel Publishing Company (p. 131).Google Scholar
Hylton, J., Christoffersen, R. E. & Hall, G. (1974). A model for the ab initio calculation of some solvent effects. Chem. Phys. Letters 24, 501.CrossRefGoogle Scholar
Ison, R. (1972). The conformation of 5-hydroxytryptamine in solution. J. Pharm. Pharmac. 24, 82.CrossRefGoogle ScholarPubMed
Ison, R. R., Partington, P. & Roberts, G. C. K. (1973). The conformation of catecholamines and related compounds in solution. Mol. Pharmacol. 9, 958.Google ScholarPubMed
Karle, I. L., Dragonette, K. S. & Brenner, S. A. (1965). The crystal and molecular structure of the serotonin-creatinine sulphate complex. Acta crystallogr. 19, 713.CrossRefGoogle ScholarPubMed
Kay, R. L. & Evans, D. F. (1966). The effect of solvent structure on the mobility of symmetrical ions in aqueous solution. J. Phys. Chem., Ithaca 70, 2325.CrossRefGoogle Scholar
Kier, L. B. (1971). Molecular Orbital Theory in Drug Research. New York: Academic Press.Google Scholar
Kollman, P. A. & Allen, L. C. (1972). The theory of the hydrogen bond. Chem. Rev. 72, 283.CrossRefGoogle Scholar
Kuntz, I. D. (1971). Hydration of macromolecules. III. Hydration of polypeptides. J. Am. chem. Soc. 93, 514.CrossRefGoogle Scholar
Kuntz, I. D. Jr, & Kauzmann, W. (1974). Hydration of proteins and polypeptides. Adv. Protein Chem. 28, 239.CrossRefGoogle ScholarPubMed
Liminga, R. & Olovsson, I. (1964). The crystal structure of hydrazine monohydrate. Acta crystallogr. 18, 1523.CrossRefGoogle Scholar
Lipkind, G. M., Arkhipova, C. F. & Popov, E. M. (1970). Theoretical study of the conformations of methylamide of N-acetylalamine in different media. Strukt. Khim. 11, 121.Google Scholar
Mellon, E. F., Korn, A. H. & Hoover, S. R. (1948). Water absorption of proteins. III. Contribution of the peptide group. J. Am. chem. Soc. 70, 3040.CrossRefGoogle Scholar
Olovsson, I. & Templeton, D. H. (1959). The crystal structure of ammonia monohydrate. Acta crystallogr. 12, 827.CrossRefGoogle Scholar
Paiva, T. V., Tominaga, M. & Paiva, A. C. N. (1970). Ionization of histamine, N-acetylhistamine and their iodinated derivatives. J. Med. Chem. 13, 689.CrossRefGoogle ScholarPubMed
Perahia, D., Saran, A. & Pullman, B. (1973). Molecular orbital calculations on the conformation of polynucleotides, their constituents and related system. In Conformation of Biological Molecules and Polymers (ed. Bergmann, E. D. and Pullman, B.), p. 225. New York: Academic Press.Google Scholar
Perricaudet, M. & Pullman, A. (1973). An ab initio quantum mechanical investigation on the rotational isomerism in amides and esters. Int. J. of Peptide and Protein Research 5, 99.CrossRefGoogle Scholar
Popkie, H., Kislenmacher, H. & Clementi, E. (1973). Study of the structure of molecular complexes. IV. The Hartree Fock potential for the water dimer and its application to the liquid state. J. chem. Phys. 59, 1325.CrossRefGoogle Scholar
Port, H. N. J. & Pullman, A. (1973 a). Quantum-mechanical studies of environmental effects on biomolecules. II. Hydration sites in purines and pyrimidines. FEBS Lett. 31.CrossRefGoogle ScholarPubMed
Port, G. N. J. & Pulman, A. (1973 b). An ab initio study of the hydration of alkylammonium groups. Theor. Chim. Acta 31, 231.CrossRefGoogle Scholar
Port, G. N. J. & Pullman, A. (1974). Quantum-mechanical studies of environmental effects on biomolecules. III. Ab initio model studies of the hydration of peptides and proteins. Intern. J. Quantum. Chem. (in the Press).Google Scholar
Pullman, A., Alagona, G. & Tomasi, J. (1974). Quantum mechanical studies of environmental effects on biomolecules. IV. Hydration of N-methylacetamide. Theor. Chim. Acta 33, 87.CrossRefGoogle Scholar
Pullman, A. & Armbruster, A. M. (1974). An ab initio study of the hydration and the ammoniation of ammonium ions. Intern. J. Quantum. Chem. 58 (in the Press).Google Scholar
Pullman, B. (1974). Conformational studies in quantum biochemistry. In: The World of Quantum Chemistry (ed. Daudel, R. and Pullman, B.), p. 61. Dordrecht, Holland: Reidel Publishing Company.CrossRefGoogle Scholar
Pullman, B., Berthod, H. & Courrièe, PH. (1974). The exploration of the conformational properties of biological phenethylamines by molecular orbital techniques. Intern. J. Quantum. Chem. (in the Press).CrossRefGoogle Scholar
Pullman, B. & Courrière, P. (1973). Molecular orbital studies on the conformation of pharmacological and medicinal compounds. In Conformation of Biological Molecules and Polymers (ed. Bergmann, E. D. and Pullman, B.), p. 547. New York: Academic Press.Google Scholar
Pullman, B., Courrière, PH. & Berthod, H. (1974). Molecular orbital studies on the conformation of hallucinogenic indolealkylamines and related compounds. The isolated molecules and the solvent effect. J. Med. Chem. 17, 439.CrossRefGoogle ScholarPubMed
Pullman, B. & Maigert, B. (1973). The ‘dipeptide model’, its significance and limitations. In Conformation of Biological Molecules and Polymers (ed. Bergmann, E. D. and Pullman, B.), p. 53. New York: Academic Press.Google Scholar
Pullman, B. & Port, G. N. J. (1974). Molecular orbital study of the conformation of histamine. The isolated molecule and the solvent effect. Mol. Pharmacol. 10, 360.Google ScholarPubMed
Pullman, B. & Pullman, A. (1974). Molecular orbital calculations on the conformation of amino acid residues of proteins. Adv. Protein Chem. 28, 347.CrossRefGoogle ScholarPubMed
Roothan, C. C. J. (1951). New developments in molecular orbitals theory. Rev. mod. Physics 23, 69.CrossRefGoogle Scholar
Sinanoglu, O. (1974). Three types of potential needed in predicting conformations of molecules in solution and their use. In The World of Quantum Chemistry (ed. Daudel, R. and Pullman, B.), p. 265. Dordrecht, Holland: Reidel Publishing Company.CrossRefGoogle Scholar
Subramanian, S. & Fischer, H. F. (1972). Detection of polar side-chain hydration in polypeptides by near infra-red spectroscopy. Biopolymers II, 1305.CrossRefGoogle Scholar
Thewalt, U. & Bugg, C. E. (1972). The crystal and molecular structure of serotonin picrate monohydrate. Acta crystallogr. B 28, 82.CrossRefGoogle Scholar
Ueki, T., Bando, S., Ashida, T. & Kakudo, M. (1971). The structure of o-Bromocarbobenzoxy-glycyl-L-prolyl-L-leucyl-glycyl-L-proline ethyl acetate monohydrate: a substrate of the enzyme collagenase. Acta crystallogr. B 27, 2219.CrossRefGoogle Scholar
Venkatachalm, C. M. & Krimm, S. (1973). Theoretical studies of the interaction of polypeptides with small molecules. Aspects of conformation of polyproline in solution. In Conformation of Biological Molecules and Polymers (ed Bergmann, E. D. and Pullman, B.), p. 141. New York: Academic Press.Google Scholar
Watt, I. C. & Leeder, J. D. (1968). Polypeptide hydration. J. Text. Ins. 59, 353.CrossRefGoogle Scholar
Wen, W. Y. & Hund, J. H. (1970). Thermodynamics of hydrocarbon gases in aqueous tetraalkylammonium salt solutions. J. Phys. Chem., Ithaca 74, 170.CrossRefGoogle Scholar