Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T10:33:08.717Z Has data issue: false hasContentIssue false

A 10,300-year-old permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South Tyrol, northern Italy)

Published online by Cambridge University Press:  20 January 2017

Karl Krainer*
Affiliation:
Institute of Geology and Paleontology, University of Innsbruck, Austria
David Bressan
Affiliation:
Institute of Geology and Paleontology, University of Innsbruck, Austria
Benjamin Dietre
Affiliation:
Institute of Botany, University of Innsbruck, Austria
Jean Nicolas Haas
Affiliation:
Institute of Botany, University of Innsbruck, Austria
Irka Hajdas
Affiliation:
Laboratory of Ion Beam Physics, ETH Zürich, Switzerland
Kathrin Lang
Affiliation:
Office for Geology and Building Materials Testing, Autonomous Province of Bolzano, Italy
Volkmar Mair
Affiliation:
Office for Geology and Building Materials Testing, Autonomous Province of Bolzano, Italy
Ulrike Nickus
Affiliation:
Institute of Meteorology and Geophysics, University of Innsbruck, Austria
Daniel Reidl
Affiliation:
Institute of Botany, University of Innsbruck, Austria
Hansjörg Thies
Affiliation:
Institute of Ecology, University of Innsbruck, Austria
David Tonidandel
Affiliation:
Office for Geology and Building Materials Testing, Autonomous Province of Bolzano, Italy
*
*Corresponding author at: Institute of Geology, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria. E-mail address:Karl.Krainer@uibk.ac.at (K. Krainer).

Abstract

Two cores were drilled on rock glacier Lazaun in the southern Ötztal Alps (N Italy). The average ice content of core Lazaun I is 43 vol.% and of core Lazaun II is 22 vol.%. Radiocarbon dating of plant macrofossil remains of core Lazaun I yielded ages ranging from 8960 cal yr BP at a depth of ca. 23.5 m to 2240 cal yr BP at a depth of 2.8 m, indicating that the ice near the base is approximately 10,300 yr old. The rock glacier was intact since that time and the ice persisted even during warm periods of the Holocene. An ice-free debris layer between 16.8 and 14.7 m separates the rock glacier into two frozen bodies. Inclinometer measurements indicate that both frozen bodies are active and that deformation occurs within a shear horizon at a depth of 20–25 m at the base of the lower frozen body and to a minor extent at a depth of approximately 14 m at the base of the upper frozen body. The ice-free debris layer in the middle of the Lazaun rock glacier indicates a more than five centennial long drought period, which dates to about 4300–3740 cal yr BP.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arenson, L., Hoelzle, M., and Springman, S. (2002). Borehole deformation measurements and internal structure of some rock glaciers in Switzerland. Permafrost and Periglacial Processes 13, 117135.CrossRefGoogle Scholar
Barsch, D. (1977). Ein Permafrostprofil aus Graubünden, Schweizer Alpen. Zeitschrift für Geomorphologie, N.F. 21, 7986.Google Scholar
Barsch, D. (1996). Rockglaciers. Indicators for the Present and Former Geoecology in High Mountain Environments. Springer-Verlag, Berlin.Google Scholar
Barsch, D., Fierz, H., and Haeberli, W. (1979). Shallow core drilling and bore-hole measurements in the permafrost of an active rock glacier near the Grubengletscher, Wallis, Swiss Alps. Arctic and Alpine Research 11, 2 215228.CrossRefGoogle Scholar
Berger, J., Krainer, K., and Mostler, W. (2004). Dynamics of an active rock glacier (Ötztal Alps, Austria). Quaternary Research 62, 233242.CrossRefGoogle Scholar
Blaauw, M. (2010). Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology 5, 5 512518.Google Scholar
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J. (2012). A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges. The Cryosphere 6, 125140.CrossRefGoogle Scholar
Bollmann, E., Rieg, L., Spross, M., Sailer, R., Bucher, K., Maukisch, M., Monreal, M., Zischg, A., Mair, V., Lang, K., and Stötter, J. (2012). Blockgletscherkataster Südtirol – Erstellung und Analyse. Permafrost in Südtirol, Innsbrucker Geographische Studien 39, 147171.Google Scholar
Bressan, D. (2007). Aufbau und Dynamik aktiver Blockgletscher am Beispiel der Lazaunalm (Ötztaler Alpen/Südtirol). Unpubl. Master Thesis, Univ. of Innsbruck, 197 pp.Google Scholar
Brisset, E., Miramont, C., Guiter, F., Anthony, E.J., Tachikawa, K., Poulenard, J., Arnaud, F., Delhon, C., Meunier, J.-D., Bard, E., and Suméra, F. (2013). Non-reversible geosystem destabilisation at 4200 cal. BP: sedimentological, geochemical and botanical markers of soil erosion recorded in a Mediterranean alpine lake. The Holocene 23, 12 18631874.Google Scholar
Christiansen, H.H. (2010). The thermal state of permafrost in the Nordic area during the International Polar Year 2007–2009. Permafrost and Periglacial Processes 21, 156181.CrossRefGoogle Scholar
Cremonese, E., Gruber, S., Phillips, M., Pogliotti, P., Boeckli, L., Noetzli, J., Suter, C., Bodin, X., Crepaz, A., Kellerer-Pirklbauer, A., Lang, K., Letey, S., Mair, V., Morra di Cella, U., Ravanel, L., Scapozza, C., Seppi, R., and Zischg, A. (2011). An inventory of permafrost evidence for the European Alps. The Cryosphere 5, 651657.Google Scholar
Delaloye, R., Perruchoud, E., Avian, M., Kaufmann, V., Bodin, X., Ikeda, A., Hausmann, H., Kääb, A., Kellerer-Pirklbauer, A., Krainer, K., Lambiel, C., Mihajlovic, D., Staub, B., Roer, I., and Thibert, E. (2008). Recent interannual variations of rock glaciers creep in the European Alps. Kane, D.L., Hinkel, K.M. Proceedings, Ninth International Conference on Permafrost (NICOP) University of Alaska, Fairbanks.343348.Google Scholar
Dietre, B., Walser, C., Lambers, K., Reitmaier, T., Hajdas, I., and Haas, J.N. (2014). Palaeoecological evidence for Mesolithic to Medieval climatic change and anthropogenic impact on the Alpine flora and vegetation of the Silvretta Massif (Switzerland/Austria). Quaternary International 353, 316.(in press).Google Scholar
Eiken, T., Hagen, J.O., and Melvold, K. (1997). Kinematic GPS survey of geometry changes on Svalbard glaciers. Annals of Glaciology 24, 157163.Google Scholar
Frauenfelder, R., and Kääb, A. (2000). Towards a paleoclimatic model of rock-glacier formation in the Swiss Alps. Annals of Glaciology 31, 281286.CrossRefGoogle Scholar
Frauenfelder, R., Haeberli, W., and Hoelzle, M. (2003). Rock glacier occurrence and related terrain parameters in a study area of the Eastern Swiss Alps. Phillips, N., Springman, S.M., Arenson, L.U. Proceedings of the 8th International Conference on Permafrost A.A. Balkema, Lisse, Netherlands.253258.Google Scholar
Fuchs, M.C., Böhlert, R., Krbetschek, M., Preusser, F., and Egli, M. (2013). Exploring the potential of luminescence methods for dating Alpine rock glaciers. Quaternary Geochronology 18, 1733.Google Scholar
Gärtner-Roer, I. (2010). Permafrost. Voigt, Th., Füssel, H.-M., G"ärtner-Roer, I., Huggel, Ch., Marty, Ch., Zemp, M. Impacts of Climate Change on Snow, Ice, and Permafrost in Europe: Observed Trends, Future Projections, and Socioeconomic Relevance, ETC/ACC Technical Paper 2010/13 6676.Google Scholar
Haas, J.N., Richoz, I., Tinner, W., and Wick, L. (1998). Synchronous Holocene climatic oscillations recorded on the Swiss Plateau and at timberline in the Alps. The Holocene 8, 3 301309.CrossRefGoogle Scholar
Haeberli, W. (1989). Pilot analysis of permafrost cores from the active rock glacier Murtél I, Piz Corvatsch, Eastern Swiss Alps. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie ETH Zürich, Arbeitsheft 9, 38.Google Scholar
Haeberli, W. (2013). Mountain permafrost – research frontiers and a special long-term challenge. Cold Regions Science and Technology 96, 7177.Google Scholar
Haeberli, W., and Funk, M. (1991). Borehole temperatures at the Colle Gnifetti core-drilling site (Monte Rosa, Swiss Alps). Journal of Glaciology 37, 3746.Google Scholar
Haeberli, W., Hoelzle, M., Kääb, A., Kellerer, F., Vonder Mühll, D., and Wagner, S. (1998). Ten years after drilling through the permafrost of the active rock glacier Murtél, eastern Swiss Alps: answered questions and new perspectives. Permafrost – 7th International Conference (Proceedings), Yellowknife (Canada), Collection Nordicana 55, 403410.Google Scholar
Haeberli, W., Kääb, A., Wagner, S., Vonder Mühll, D., Geissler, P., Haas, J.N., Glatzel-Mattheier, H., and Wagenbach, D. (1999). Pollen analysis and 14C age of moss remains in a permafrost core recovered from the active rock glacier Murtél-Corvatsch, Swiss Alps: geomorphological and glaciological implications. Journal of Glaciology 45, 18.Google Scholar
Haeberli, W., Brandova, D., Burga, C., Egli, M., Frauenfelder, R., Kääb, A., Maisch, M., Mauz, B., and Dikau, R. (2003). Methods for absolute and relative age dating of rock-glacier surfaces in alpine permafrost. Phillips, M., Springman, S., Arenson, L. Proceedings of the 8th International Conference on Permafrost 2003, Zürich 343348.Google Scholar
Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O., Kääb, A., Kaufmann, V., Ladanyi, B., Matsuoka, N., Springman, S., and VonderMühl, D. (2006). Permafrost creep and rock glacier dynamics. Permafrost and Periglacial Processes 17, 189216.CrossRefGoogle Scholar
Haeberli, W., Noetzli, J., Arenson, L., Delaloye, R., Gärtner-Roer, I., Gruber, S., Isaksen, K., Kneisel, C., Krautblatter, M., and Phillips, M. (2010). Mountain permafrost: development and challenges of a young research field. Journal of Glaciology 56, 200 10431058.Google Scholar
Hajdas, I. (2008). Radiocarbon dating and its applications in Quaternary studies. Eiszeitalter und Gegenwart – Quaternary Science Journal 57, 224.Google Scholar
Harris, C. (2003). Warming permafrost in European mountains. Global Planetary Change 39, 215225.Google Scholar
Hausmann, H., Krainer, K., Br"ckl, E., and Mostler, W. (2007). Internal structure and ice content of Reichenkar Rock Glacier (Stubai Alps, Austria) assessed by geophysical investigations. Permafrost and Periglacial Processes 18, 351367.Google Scholar
Hausmann, H., Krainer, K., Brückl, E., and Ullrich, C. (2012). Internal structure, ice content and dynamics of Ölgrube and Kaiserberg rock glaciers (Ötztal Alps, Austria) determined from geophysical surveys. Australian Journal of Earth Sciences 105, 2 1231.Google Scholar
Hoelzle, M., Wagner, S., Kääb, A., and VonderMühll, D. (1998). Surface movement and internal deformation of ice-rock mixtures within rock glaciers at Pontresina-Schafberg, Upper Engadin, Switzerland. Lewkowicz, A.G., Allard, M. Proceedings of the 7th International Conference on Permafrost Centre D'Etudes Nordiques, Sainte-Foy, Quebec, Canada.465471.Google Scholar
Hofmann-Wallenhof, B., Lichtenegger, H., and Collins, J. (1994). GPS Theory and Practice. Springer-Verlag, New York.Google Scholar
Hormes, A., Müller, B.U., and Schlüchter, C. (2001). The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps. The Holocene 11, 3 255265.CrossRefGoogle Scholar
Ikeda, A., Matsuoka, N., and Kääb, A. (2008). Fast deformation of perennially frozen debris in a warm rock glacier in the Swiss Alps: an effect of liquid water. Journal of Geophysical Research 113, F01021 10.1029/2007JF000859.CrossRefGoogle Scholar
Kääb, A., Kaufmann, V., Ladst"dter, R., and Eiken, T. (2003). Rock glacier dynamics: implications from high-resolution measurements of surface velocity fields. Phillips, N., Springman, S.M., Arenson, L.U. Proceedings of the 8th International Conference on Permafrost A.A. Balkema, Lisse, Netherlands.501506.Google Scholar
Kääb, A., Frauenfelder, R., and Roer, I. (2007). On the response of rockglacier creep to surface temperature increase. Global Planetary Change 56, 172187.Google Scholar
Kaufmann, V. (2012). The evolution of rock glacier monitoring using terrestrial photogrammetry: the example of Äu"eres Hochebenkar rock glacier (Austria). Australian Journal of Earth Sciences 105, 2 6377.Google Scholar
Kaufmann, V., and Ladst"dter, R. (2002). Spatio-temporal analysis of the dynamic behaviour of the Hochebenkar rock glaciers (Oetztal Alps, Austria) by means of digital photogrammetric methods. Grazer Schriften der Geographie und Raumforschung 37, 119140.Google Scholar
Kellerer-Pirklbauer, A. (2007). Lithology and the distribution of rock glaciers: Niedere Tauern Range, Styria, Austria. Zeitschrift f"r Geomorphologie, N.F. 51, Suppl. 2 1738.Google Scholar
Kellerer-Pirklbauer, A., Lieb, G.K., and Kleinferchner, H. (2012). A new rock glacier inventory for the easternmost part of the European Alps. Australian Journal of Earth Sciences 105, 2 7893.Google Scholar
Konrad, S.K., Humphrey, N.F., Steig, E.J., Clark, D.H., Potter jr., N., and Pfeffer, W.T. (1999). Rock glacier dynamics and paleoclimatic implications. Geology 27, 11311134.Google Scholar
Krainer, K., and Mostler, W. (2000). Reichenkar Rock Glacier, a glacial derived debris"ice system in the Western Stubai Alps, Austria. Permafrost and Periglacial Processes 11, 267275.Google Scholar
Krainer, K., and Mostler, W. (2001a). Aktive Blockgletscher als Transportsysteme f"r Schuttmassen im Hochgebirge: Der Reichenkar Blockgletscher in den westlichen Stubaier Alpen. Geoforum Umhausen 1, 2843.Google Scholar
Krainer, K., and Mostler, W. (2001b). Der aktive Blockgletscher im Hinteren Langtal Kar, G""nitz Tal (Schober Gruppe, Nationalpark Hohe Tauern). Wissenschaftliche Mitteilungen aus dem Nationalpark Hohe Tauern 6, 139168.Google Scholar
Krainer, K., and Mostler, W. (2002). The discharge of active rock glaciers: examples from the Eastern Alps (Austria). Arctic Antarctic and Alpine Research 34, 2 142149.Google Scholar
Krainer, K., and Mostler, W. (2004). Ein aktiver Blockgletscher im Sulzkar, westliche Stubaier Alpen (Tirol). Geo.Alp 1, 3755.Google Scholar
Krainer, K., and Mostler, W. (2006). Flow velocities of active rock glaciers in the Austrian Alps. Geografiska Annaler 88A, 267280.CrossRefGoogle Scholar
Krainer, K., and Ribis, M. (2012). A rock glacier inventory of the Tyrolean Alps (Austria). Australian Journal of Earth Sciences 105, 2 3247.Google Scholar
Krainer, K., Mostler, W., and Sp"tl, C. (2007). Discharge from active rock glaciers, Austrian Alps: a stable isotope approach. Australian Journal of Earth Sciences 100, 102112.Google Scholar
Krainer, K., Lang, K., and Hausmann, H. (2010). Active rock glaciers at Croda Rossa/Hohe Gaisl, eastern Dolomites (Alto Adige/South Tyrol, northern Italy). Geografia Fisica e Dinamica Quaternaria 33, 2536.Google Scholar
Krainer, K., Mussner, L., Behm, M., and Hausmann, H. (2012). Multi-disciplinary investigation of an active rock glacier in the Sella Group (Dolomites; Northern Italy). Australian Journal of Earth Sciences 105, 2 4862.Google Scholar
Ladst"dter, R., and Kaufmann, V. (2005). Studying the movement of the Outer Hochebenkar rock glacier: aerial vs. ground-based photogrammetric methods. 2nd European Conference on Permafrost, Potsdam, Germany, Terra Nostra, 2005 (2) 97(abstract).Google Scholar
Lambiel, C., and Delaloye, R. (2004). Contribution of real-time kinematic GPS in the study of creeping mountain permafrost: examples from the Western Swiss Alps. Permafrost and Periglacial Processes 15, 3 229241.Google Scholar
Laustela, M., Egli, M., Frauenfelder, R., Kääb, A., Maisch, M., and Haeberli, W. (2003). Weathering rind measurements and relative age dating of rock glacier surfaces in crystalline regions of the Eastern Swiss Alps. Phillips, M., Springman, S., Arenson, L. Proceedings of the 8th International Conference on Permafrost 2003, Z"rich 627632.Google Scholar
Lieb, G.K. (1998). High-mountain permafrost in the Austrian Alps (Europe). Permafrost – 7th International Conference (Proceedings), Yellowknife (Canada), Collection Nordicana, 55, 663668.Google Scholar
L"thi, M.P., and Funk, M. (2001). Modelling heat flow in a cold, high altitude glacier: interpretation of measurements from Colle Gnifetti, Swiss Alps. Journal of Glaciology 47, 314324.Google Scholar
Magny, M., Vanni"re, B., Zanchetta, G., Fouache, E., Touchais, G., Petrika, L., Coussot, C., Walter-Simmonet, A.-V., and Arnaud, F. (2009). Possible complexity of the climatic event around 4300"3800 cal. BP in the central and western Mediterranean. The Holocene 19, 6 823833.Google Scholar
Magny, M., Arnaud, F., Billaud, Y., and Marguet, A. (2012). Lake-level fluctuations at Lake Bourget (eastern France) around 4500"3500 cal. a BP and their palaeoclimatic and archaeological implications. Journal of Quaternary Science 27, 5 494502.Google Scholar
Magny, M. (2013). North"south palaeohydrological contrasts in the central Mediterranean during the Holocene: tentative synthesis and working hypotheses. Climate of the Past 9, 20432071.CrossRefGoogle Scholar
Matthews, J.A., Nesje, A., and Linge, H. (2013). Relict talus-foot rock glaciers at Oyberget, Upper Ottadalen, Southern Norway: Schmidt hammer exposure ages and palaeoenvironmental implications. Permafrost and Periglacial Processes 24, 336346.CrossRefGoogle Scholar
Nicolussi, K. (2009). Alpine Dendrochronologie – Untersuchungen zur Kenntnis der holoz"nen Umwelt- und Klimaentwicklung. Klimawandel in "sterreich, Alpine space – man and environment, 6, 4154.Google Scholar
N"tzli, J., and Vonder Mühll, D. (2010). Permafrost in Switzerland 2006/2007 and 2007/2008, Z"rich. Swiss Academy of Sciences (SCNAT), (Cryospheric Commission (Glaciological Report Permafrost), 8/9).Google Scholar
N"tzli, J., Gruber, S., and von Poschinger, A. (2010). Modellierung und Messung von Permafrosttemperaturen im Gipfelgrat der Zugspitze, Deutschland. Geographica Helvetica 65, 113123.CrossRefGoogle Scholar
R Core Team, (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.(Version 3.0.0, http://www.r-project.org/).Google Scholar
Reimer, P.J., Baillie, M.G., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Burr, G.S., and Edwards, R.L. (2009). IntCal09 and Marine09 radiocarbon age calibration curves, 0"50,000 years cal BP. Radiocarbon 51, 4 11111150.CrossRefGoogle Scholar
Schneider, R., and Schneider, H. (2001). Zur 60-j"hrigen Messreihe der kurzfristigen Geschwindigkeitsschwankungen am Blockgletscher im "usseren Hochebenkar, Ötztaler Alpen, Tirol. Zeitschrift f"r Gletscherkunde und Glazialgeologie 37, 133.Google Scholar
Schoeneich, P., Bodin, X., Krysiecki, J.-M., Deline, P., and Ravanel, L. (2010). Permafrost in France, Grenoble. PermaFRANCE (PermaFRANCE Network Report 1) .Google Scholar
Stuiver, M., and Polach, H.A. (1977). Discussion – reporting of 14C data. Radiocarbon 19, 3 355363.Google Scholar
Synal, H.-A., Stocker, M., and Suter, M. (2007). MICADAS: a new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms 259, 1 713.Google Scholar
Vonder Mühll, D. (1992). Evidence of intrapermafrost groundwater flow beneath an active rock glacier in the Swiss Alps. Permafrost and Periglacial Processes 3, 169173.Google Scholar
Vonder Mühll, D. (1996). Drilling in alpine permafrost. Norwegian Journal of Geography (Norsk Geografisk Tidsskrift) 50, 1 1724.Google Scholar
Vonder Mühll, D., and Haeberli, W. (1990). Thermal characteristics of the permafrost within an active rock glacier (Murt"l/Corvatsch, Grisons, Swiss Alps). Journal of Glaciology 36, 123 151158.CrossRefGoogle Scholar
Vonder Mühll, D., and Holub, P. (1992). Borehole logging in Alpine permafrost, Upper Engadin, Swiss Alps. Permafrost and Periglacial Processes 3, 2 125132.Google Scholar
Vonder Mühll, D., Stucki, T., and Haeberli, W. (1998). Borehole temperatures in Alpine permafrost: a ten . Permafrost – 7th International Conference (Proceedings), Yellowknife (Canada) year series, Collection Nordicana, 55, 10891095.Google Scholar
Zanchetta, G., Giraudi, C., Sulpizio, R., Magny, M., Drysdale, R.N., and Sadori, L. (2012). Constraining the onset of the Holocene "Neoglacial" over the central Italy using tephra layers. Quaternary Research 78, 236247.Google Scholar
Zanchetta, G., Bini, M., Cremaschi, M., Magny, M., and Sadori, L. (2013). The transition from natural to anthropogenic-dominated environmental change in Italy and the surrounding regions since the Neolithic: an introduction. Quaternary International 303, 19.Google Scholar
Zhao, L., Wu, Q., Marchenko, S.S., and Sharkuu, N. (2010). Thermal state of permafrost and active layer in Central Asia during the International Polar Year. Permafrost and Periglacial Processes 21, 198207.Google Scholar