Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T09:32:17.344Z Has data issue: false hasContentIssue false

Deglaciation and Holocene climate change in the western Peruvian Andes

Published online by Cambridge University Press:  20 January 2017

Chengyu Weng*
Affiliation:
Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
Mark B. Bush
Affiliation:
Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
Jason H. Curtis
Affiliation:
Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
Alan L. Kolata
Affiliation:
Department of Anthropology, University of Chicago, 1126 E. 59th Street, Chicago, IL 60637, USA
Tom D. Dillehay
Affiliation:
Department of Anthropology, University of Kentucky, Lexington, KY 40506, USA
Michael W. Binford
Affiliation:
Department of Geography, University of Florida, Gainesville, FL 32611, USA
*
Corresponding author. E-mail address:weng@science.uva.nl (C. Weng), mbush@fit.edu (M.B. Bush).

Abstract

Pollen, charcoal, magnetic susceptibility, and bulk density data provide the first paleoecological record spanning the last 33,000 years from the western cordillera of the Peruvian Andes. Sparse super-puna vegetation existed before 30,000 cal yr B.P. around Lake Compuerta (3950 m elevation), prior to a sedimentary hiatus that lasted until c. 16,200 cal yr B.P. When sedimentation resumed, a glacial foreland or super-puna flora is represented in which Polylepis was a significant element. Glacial outwash, marked by high sedimentary magnetic susceptibility, increased from c.16,200 cal yr B.P. and reached a peak at c. 13,200 cal yr B.P. Between c. 12,500 cal yr B.P. and 10,000 cal yr B.P., magnetic susceptibility was reduced. Vegetation shifts suggest a cool dry time, consistent with regional descriptions of the Younger Dryas event. Deglaciation resumes by 10,000 cal yr B.P. and the last ice is lost from the catchment at ∼7500 cal yr B.P. During the early Holocene warm and dry period between 10,000 and 5500 cal yr B.P., Alnus expanded in downslope forests. Alnus declined in abundance at 5500 cal yr B.P. when wetter and cooler conditions returned and human activity intensified. Maize (Zea mays) pollen first occurred in the core at ∼2600 cal yr B.P., indicating a minimum age for local agriculture. An increase in Alnus pollen abundance at ∼1000 cal yr B.P. could be due to human activity or perhaps due to a regional climate change associated with cultural turnover elsewhere in the Andes at this time.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 Current address: Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands.
2 Current address: Department of Anthropology, Vanderbilt University, Nashville, TN 37325, USA.

References

Abbott, M.B., Seltzer, G.O., Kelts, K.R., and Southon, J. Holocene paleohydrology of the tropical Andes from lake records. Quaternary Research 47, (1997). 7080.Google Scholar
Abbott, M.B., Wolfe, B.B., Aravena, R., Wolfe, A.P., and Seltzer, G.O. Holocene hydrological reconstructions from stable isotopes and paleolimnology, Cordillera Real, Bolivia. Quaternary Science Reviews 19, (2000). 18011820.CrossRefGoogle Scholar
Abbott, M.B., Wolfe, B.B., Wolfe, A.P., Seltzer, G.O., Aravena, R., Mark, B.G., Polissar, P.J., Rodbell, D.T., Rowe, H.D., and Vuille, M. Holocene paleohydrology and glacial history of the central Andes using multiproxy lake sediment studies. Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 123138.Google Scholar
Baker, P.A., Rigsby, C.A., Seltzer, G.O., Fritz, S.C., Lowenstein, T.K., Bacher, N.P., and Veliz, C. Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409, (2001). 698701.Google Scholar
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., and Broda, J.P. The History of South American Tropical Precipitation for the Past 25,000 Years. Science 291, (2001). 640643.Google Scholar
Bard, E. Geochemical and geophysical implications of the radiocarbon calibration. Geochimica et Cosmochimica Acta 62, (1998). 20252038.Google Scholar
Betancourt, J.L., Latorre, C., Rech, J.A., Quade, J., and Rylander, K.A. A 22,000-year record of monsoonal precipitation from Northern Chile's Atacama desert. Science 289, (2000). 15421546.Google Scholar
Binford, M.W., Kolata, A.L., Brenner, M., Janusek, J., Seddon, M.T., Abbott, M.B., and Curtis, J.H. Climate variation and the rise and fall of an Andean civilization. Quaternary Research 47, (1997). 235248.Google Scholar
Bonavia, D. Peru: Hombre y Historia. (1991). Ediciones Edubanco, Lima.Google Scholar
Bush, M.B. Deriving response matrices from central America modern pollen rain. Quarternary Research 54, (2000). 132143.CrossRefGoogle Scholar
Bush, M.B., Hansen, B.C.S., Rodbell, D., Seltzer, G.O., Young, K.R., León, B., Silman, M.R., Abbott, M.B., and Gosling, W.D. A 17,000 year history of Andean climatic and vegetation change from Laguna de Chochos, Peru. Journal of Quaternary Science 20, (2005). 703714.Google Scholar
Chepstow-Lusty, A.J., and Winfield, M. Inca agroforestry: lessons from the past. Ambio 29, (2000). 322328.Google Scholar
Chepstow-Lusty, A.J., Bennett, K.D., Fjeldsa, J., Kendall, A., Galiano, W., and Herrera, A.T. Tracing 4000 years of environmental history in the Cuzco area, Peru, from the pollen record. Mountain Research and Development 18, (1998). 159172.Google Scholar
Chepstow-Lusty, A.J., Frogley, M.R., Bauer, B.S., Bush, M.B., and Herreras, A.T. A Late Holocene record of arid events from the Cuzco region, Peru. Journal of Quaternary Science 18, (2003). 491502.Google Scholar
Clapperton, C.W. Quaternary Geology and Geomorphology of South America. (1993). Elsevier, Amsterdam.Google Scholar
Colinvaux, P.A., Olson, K., and Liu, K.-b. Late-Glacial and Holocene pollen diagrams from two endorheic lakes of the inter-Andean plateau of Ecuador. Review of Palaeobotany and Palynology 55, (1988). 8399.Google Scholar
Colinvaux, P.A., Bush, M.B., Steinitz-Kannan, M., and Miller, M.C. Glacial and postglacial pollen records from the Ecuadorian Andes and Amazon. Quaternary Research 48, (1997). 6978.Google Scholar
Colinvaux, P.A., De Oliveira, P.E., and Moreno, J.E. Amazon Pollen Manual and Atlas. (1999). Harwood Academic Press, New York.Google Scholar
Davis, S.D., Heywood, V.H., Hamilton, A.C., (1997). Centers of plant diversity: a guide and strategy for their conservation. The World Wide Fund for Nature (WWF) and IUCN-The World Conservation Union, .Google Scholar
Dillehay, T.D. The Settlement of the Americas: A New Prehistory. (2000). Basic Books, New York.Google Scholar
Dillehay, T.D. Climate and human migrations. Science 298, (2002). 764765.Google Scholar
Ellenberg, H. Man's influence on tropical mountain ecosystems in South America. Journal of Ecology 67, (1979). 401416.CrossRefGoogle Scholar
Faegri, K., and Iversen, J. Textbook of Pollen Analysis. (1989). Wiley, Chichester.Google Scholar
Fisher, M.M., Brenner, M., and Reddy, K.R. A simple, inexpensive piston corer for collecting undisturbed sediment/water interface profiles. Journal of Paleolimnology 7, (1992). 157161.Google Scholar
Fornari, M., Risacher, F., and Feraud, G. Dating of paleolakes in the central Altiplano of Bolivia. Palaeogeography, palaeoclimatology, palaeoecology 172, (2001). 269282.Google Scholar
Grimm, E., (1992). TILIA Software, Version 1.12. Illinois State University, .Google Scholar
Hansen, B.C.S., and Rodbell, D.T. A late-glacial/Holocene pollen record from the eastern Andes of Northern Peru. Quaternary Research 44, (1995). 216227.Google Scholar
Hansen, B.C.S., Wright, H.E.J., and Bradbury, J.P. Pollen studies in the Junín area, Central Peruvian Andes. Geological Society of America Bulletin 95, (1984). 14541465.Google Scholar
Hansen, B.C.S., Seltzer, G.O., and Wright, H.E.J. Late Quaternary vegetation change in the central Peruvian Andes. Palaeogeography, Palaeoclimatology, Palaeoecology 109, (1994). 263285.Google Scholar
Hansen, B.C.S., Rodbell, D.T., Seltzer, G.O., Leon, B., Young, K.R., and Abbott, M. Late-glacial and Holocene vegetational history from two sites in the western Cordillera of southwestern Ecuador. Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 79108.Google Scholar
Heusser, C.J. Pollen and Spores of Chile. Modern types of the Pteridophyta, Gymnospermae and Angiospermae. (1971). University of Arizona Press, Tucson, AZ.Google Scholar
Hooghiemstra, H. Vegetational and Climatic History of the High Plain of Bogota, Colombia: A Continuous Record of the last 3.5 million Years. (1984). Gantner Verlag, Vaduz.Google Scholar
Kessler, M. The genus Polylepis (Rosaceae) in Bolivia. Candollea 50, (1995). 131171.Google Scholar
Kessler, M. The “Polylepis problem”: where do we stand?. Ecotropica 8, (2002). 97110.Google Scholar
Klein, A.G., Seltzer, G.O., and Isacks, B.L. Modern and local glacial maximum snowlines in the central Andes of Peru, Bolivia and Northern Chile. Quaternary Science Reviews 17, (1998). 121.Google Scholar
Kolata, A.L. Environmental thresholds and the ‘Natural History’ of an Andean civilization. Bawden, G., and Reycraft, R. Environmental Disaster and the Archeology of Human Response. (2000). University of New Mexico Press, Albuquerque. 163178.Google Scholar
Lavallee, D. The First South Americans. (2000). University of Utah Press, Salt Lake City.Google Scholar
Markgraf, V., and D'Antoni, H.L. Pollen and Spores of Argentina. (1978). University of Arizona, Tucson.Google Scholar
Núñez, L., Grosjean, M., and Cartajena, I. Human occupations and climate change in the Puna de Atacama, Chile. Science 298, (2002). 821824.Google Scholar
Paduano, G.M., Bush, M.B., Baker, P.A., Fritz, S.L., and Seltzer, G.O. The Late Quaternary vegetation history of Lake Titicaca, Peru/Bolivia. Paleogeography, Paleoclimatology, Paleoecology 194, (2003). 259279.Google Scholar
Placzek, C., Quade, J., and Betancourt, J.L. Holocene lake-level fluctuations of Lake Aricota, southern Peru. Quaternary Research 56, (2001). 181190.Google Scholar
Ramirez, E., Hoffmann, G., Taupin, J.D., Francou, B., Ribstein, P., Caillon, N., Ferron, F.A., Landais, A., Petit, J.R., Pouyaud, B., Schotterer, U., Simoes, J.C., and Stievenard, M. A new Andean deep ice core from Nevado Illimani (6350 m), Bolivia. Earth and Planetary Science Letters 212, (2003). 337350.Google Scholar
Roubik, D.W., and Moreno, E. Pollen and Spores of Barro Colorado Island. Monographs in Systematic Botany vol. 36, (1991). Missouri Botanical Garden, Google Scholar
Seltzer, G.O., Rodbell, D.T., and Burns, S. Isotopic evidence for late Quaternary climatic change in tropical South America. Geology 28, (2000). 3538.Google Scholar
Seltzer, G.O., Rodbell, D.T., Baker, P.A., Fritz, S.C., Tapia, P.M., Rowe, H.D., and Dunbar, R.B. Early deglaciation in the tropical Andes. Science 298, (2002). 16851686.Google Scholar
Smith, J.A., Seltzer, G.O., Farber, D.L., Rodbell, D.T., and Finkel, R.C. Early local last Glacial maximum in the tropical Andes. Science 308, (2005). 678681.Google Scholar
Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen Spores 13, (1971). 615621.Google Scholar
Stuiver, M., and Reimer, P.J. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, (1993). 215230.Google Scholar
Tapia, P.M., Fritz, S.C., Baker, P.A., Seltzer, G.O., and Dunbar, R.B. A Late Quaternary diatom record of tropical climatic history from Lake Titicaca (Peru and Bolivia). Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 139164.Google Scholar
Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Lin, P.-N., Henderson, K.A., Cole-Dai, J., Bolsan, J.F., and Liu, K.B. Late glacial stage and Holocene tropical ice core records from Huascaran, Peru. Science 269, (1995). 4650.Google Scholar
Thompson, L.G., Mosley-Thompson, E., and Henderson, K.A. Ice-core palaeoclimate records in tropical South America since the Last Glacial Maximum. Journal of Quaternary Science 15, (2000). 377394.Google Scholar
Weng, C., Bush, M.B., and Silman, M.R. An analysis of modern pollen rain on an elevational gradient in southern Peru. Journal of Tropical Ecology 20, (2004). 113124.Google Scholar
Weng, C., Bush, M.B., and Chepstow-Lusty, A.J. Holocene changes of Andean alder (Alnus acuminata) in highland Ecuador and Peru. Journal of Quaternary Science 19, (2004). 685691.Google Scholar
Ybert, J.P. Ancient lake environments as deduced from pollen analysis. DeJoux, C., and Iltis, A. Lake Titicaca: A Synthesis of Limnological Knowledge. (1992). Kluwer Academic Publishers, Boston. 4962.Google Scholar
Young, K.R., and Leon, B. Distribution and conservation of Peru's Montane forests: interactions between the biota and human society. Hamilton, L.S., Juvik, J.O., and Scatena, F.N. Tropical Montane Cloud Forests. (1995). Springer-Verlag, Amsterdam. 363376.Google Scholar