Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-29T22:24:10.272Z Has data issue: false hasContentIssue false

Holocene environments of central Iturup Island, southern Kuril archipelago, Russian Far East

Published online by Cambridge University Press:  12 June 2017

Anatoly Lozhkin
Affiliation:
North East Interdisciplinary Research Institute, Far East Branch, Russian Academy of Sciences, Magadan 685000, Russia
Pavel Minyuk
Affiliation:
North East Interdisciplinary Research Institute, Far East Branch, Russian Academy of Sciences, Magadan 685000, Russia
Marina Cherepanova
Affiliation:
Institute of Biology and Soil Science, Far East Branch, Russian Academy of Sciences, Vladivostok 690022, Russia
Patricia Anderson*
Affiliation:
Earth & Space Sciences and Quaternary Research Center, Box 351310, University of Washington, Seattle, Washington 98195, USA
Bruce Finney
Affiliation:
Department of Biological Sciences and Geosciences, Idaho State University, Pocatello, Idaho 83209-8007, USA
*
*Corresponding author at: Earth & Space Sciences, Box 351310, University of Washington, Seattle, Washington 98195, USA. E-mail: pata@u.washington.edu (P. Anderson).

Abstract

Two lake records document Holocene changes in sea level, vegetation, and climate on the Okhotsk and Pacific sides of central Iturup Island, southern Kuril Islands. The sediment cores originated within tidal flats that subsequently developed into a marine strait which crosscut the island as sea levels rose during the early Holocene. Brackish lagoons and eventually freshwater lakes formed by ~7100 cal yr BP associated with warmer than present conditions. Past vegetation changes indicate a clear Holocene thermal maximum recorded on the Pacific coast but a less distinct optimum on the western shores (~7200–6100 cal yr BP). A gradual cooling toward modern levels occurred ~6100–3500 cal yr BP. Four prominent layers of coarse sediment found in mid- to late Holocene lake deposits may correspond to intervals of climate cooling/dune formation previously documented in coastal sections. Although chronological limitations question the synchronicity of these events across the south Russian Far East, it seems probable that they have a regional signature. However, the mechanisms responsible for Holocene climatic changes are likely the result of complex interactions of hemispheric-scale atmospheric patterns, marine characteristics, and regional feedbacks rather than simply fluctuations in sea levels as suggested in the current interpretative model.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, P.M., Lozhkin, A.V., 2017. Modern pollen rain from lake sediments of the Kuril Islands. Vestnik 2017, 313.Google Scholar
Anderson, P.M., Minyuk, P.S., Lozhkin, A.V., Cherepanova, M.V., Borkhodoev, V., Finney, B.A., 2015. Multiproxy record of Holocene environmental changes from the northern Kuril Islands (Russian Far East). Journal of Paleolimnology 54, 379393.CrossRefGoogle Scholar
Bird, M.I., Austin, W.E.H., Wurster, C.M., Field, L.K., Mojtahld, M., Sargaent, C., 2010. Punctuated eustatic sea-level rise in the early mid-Holocene. Geology 38, 803806.Google Scholar
Blaauw, M., Christen, J.A., 2011. Bacon Manual – v2.2. http://www.chrono.qub.ac.uk/blaauw/manualBacon_2.2.pdf.Google Scholar
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., Bonani, G., 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, 12571266.Google Scholar
Bormans, M., Webster, I.T., 1999. Modelling the spatial and temporal variability of diatoms in the River Murray. Journal of Plankton Research 21, 581598.Google Scholar
Bradshaw, E.G., Anderson, N.J., 2003. Environmental factors that control the abundance of Cyclostephanos dubius (Bacillariophyceae) in Danish lakes, from seasonal to century scale. European Journal of Phycology 38, 265276.Google Scholar
Chen, F., Qinghai, X., Chen, J., Birks, J., Liu, J., Zhang, S., Jin, L., et al., 2015. East Asian summer monsoon precipitation variability since the last deglaciation. Nature Scientific Reports 5, 11186. http://dx.doi.org/10.1038/srep11186.CrossRefGoogle ScholarPubMed
Czerepanov, S.K., 1995. Vascular Plants of Russia and Adjacent States (the Former USSR). Cambridge University Press, New York.Google Scholar
Fitzhugh, B., Shubin, V.O., Tezuka, K., Ishizuka, Y., Mandryk, C.A.S., 2016. Archeology in the Kuril Islands: advances in the study of human paleobiogeography and northwest Pacific prehistory. Arctic Anthropology 39, 6994.Google Scholar
Gibson, C.E., Anderson, N.J., Haworth, E.Y., 2003. Aulacoseira subarctica: taxonomy, physiology, ecology and palaeoecology. European Journal of Phycology 38, 83101.CrossRefGoogle Scholar
Gorbarenko, S.A., Southon, J.R., Keigwin, L.D., Cherepanova, M.V., Gvozdeva, I.G., 2004. Late Pleistocene-Holocene oceanographic variability in the Okhotsk Sea: lithological and paleontological evidence. Palaeogeography, Palaeoclimatology, Palaeoecology 209, 281301.CrossRefGoogle Scholar
Grishin, S.Y., Barkalov, V.Y., Kuznetsova, T.A., 2005. The vegetation cover of Onekotan Island (Kuril Islands). [In Russian.] Komorov’s Reading Dal’nauka 51, 80100.Google Scholar
Harada, N., Katsuki, K., Nakagawa, M., Matsumoto, A., Seki, O., Addison, J.A., Finney, B.P., Sato, M., 2014. Holocene sea surface temperature and sea ice extent in the Okhotsk and Bering Sea. Progress in Oceanography 126, 242253.CrossRefGoogle Scholar
Kawahata, H., Ohshima, H., Shimada, C., Oba, T., 2003. Terrestrial-oceanic environmental change in the southern Okhotsk Sea during the Holocene. Quaternary International 108, 6776.CrossRefGoogle Scholar
Korotky, A.M., 2002. Palynological characteristics and radiocarbon data of late Quaternary deposits of the Russian Far East (lower Amur valley, Primor’ye, Sakhalin Island, Kuril Islands). In Anderson, P.M., Lozhkin, A.V. (Eds.), Late Quaternary Vegetation and Climate of Siberia and the Russian Far East (Palynological and Radiocarbon Database). Northeast Science Center Far East Branch, Russian Academy of Sciences, Magadan, Russia, pp. 257265.Google Scholar
Korotky, A.M., Pletnev, S.P., Pushkar, V.S., Grebennikova, T.A., Razjigaeva, N.G., Sakhbgareeva, E.D., Mokhova, L.M., 1988. Evolution Environment of South Far East (Late Pleistocene and Holocene) [In Russian.] Nauka, Moscow.Google Scholar
Korotky, A.M., Razjigaeva, N.G., Grebennikova, T.A., Ganzey, L.A., Bazarova, V.B., Sulerzhitsky, L.D., Lutaenko, K.A., 2000. Middle- and late-Holocene environments and vegetation history of Kunashir Island, Kurile Islands, northwestern Pacific. Holocene 10, 311331.CrossRefGoogle Scholar
Korotky, A.M., Razjigaeva, N.G., Grebennikova, T.A., Volkov, V.G., Ganzey, L.A., Bazarova, V.B., 1997. Marine terraces of western Sakhalin Island. Catena 30, 6181.Google Scholar
Korotky, A.M., Razjigaeva, N.G., Mokhova, L.M., Ganzey, L.A., Grebennikova, T.A., Bazarova, V.B., 1996. Coastal dunes as an indicator of period of global climatic deterioration (Kunashir Island, Kurils). Geology of the Pacific Ocean 13, 7384.Google Scholar
Korotky, A.M., Volkov, V.G., Grebennikova, T.A., Razzhigaeva, N.G., Pushkar, V.S., Ganzei, L.A., Mokhova, L.M., 2005. Far East. In Velichko, A.A. (Ed), Cenozoic Climate and Environmental Changes in Russia. Geological Society of America. Special Papers 382, 121137.Google Scholar
Kotlyakov, V.M. (Ed.), 2009. Atlas of the Kuril Islands [In Russian.] Russian Academy of Sciences, Geographic Institute and Pacific Ocean Geographic Institute, Moscow-Vladivostok.Google Scholar
Krammer, K., Lange-Bertalott, H., 1986. Bacillariophyceae. Teil 1. Naviculaceae. [In German.] In Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D. (Eds.), Süßwasserflora von Mittleeuropa. Gustav Fisher Verlag, Jena, Germany, pp. 1876.Google Scholar
Krammer, K., Lange-Bertalott, H., 1988. Bacillariophyceae. Teil 2. Bacillariaceae, Epithemiaceae, Suirellaceae. [In German.] In Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D. (Eds.), Süßwasserflora von Mittleeuropa. Gustav Fisher Verlag, Stuttgart, Germany, pp. 1596.Google Scholar
Krammer, K., Lange-Bertalott, H., 1991a. Bacillariophyceae. Teil 3. Centrales, Fragilariaceae, Eunotiaceae. [In German.] In Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D. (Eds.), Süßwasserflora von Mittleeuropa. Gustav Fisher Verlag, Stuttgart, Germany, pp. 1576.Google Scholar
Krammer, K., Lange-Bertalott, H., 1991b. Bacillariophyceae. Teil 4. Achnanthaceae, Kristische Erganzungen zu Navicula (Lineolatae) und Gomophonema. [In German.] In Ettl, H., Gartner, G., Gerloff, J., Heynig, H., Mollenhauer, D. (Eds.), Süßwasserflora von Mittleeuropa. Gustav Fisher Verlag, Stuttgart, Germany, pp. 1437.Google Scholar
Kumano, S., Ihira, M., Maeda, Y., 1990. Holocene sedimentary history of some coastal plains in Hokkaido, Japan. Ecological Research 5, 221235.Google Scholar
Leipe, C., Nakagawa, T., Gotanda, K., Müller, S., Tarasov, P.E., 2015. Late Quaternary vegetation and climate dynamics at the northern limit of the East Asian summer monsoon and its regional and global-scale controls. Quaternary Science Reviews 116, 57–17.Google Scholar
MacInnes, B., Kravchunovskaya, E., Pinegina, T., Bourgeois, J., 2016. Paleotsunamis from the central Kuril Islands segment of the Japan-Kuril-Kamchatka subduction zone. Quaternary Research 86, 5466.CrossRefGoogle Scholar
Martyn, D., 1992. Climates of the World. Developments in Atmospheric Science 18. Elsevier, Amsterdam.Google Scholar
Meyers, P.A., 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic and paleoclimatic processes. Organic Geochemistry 27, 213250.CrossRefGoogle Scholar
Meyers, P.A., Ishiwatari, R., 1993. Lacustrine organic geochemistry an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry 20, 867900.CrossRefGoogle Scholar
Miettinen, J.O., 2003. A diatom-total phosphorus transfer function for freshwater lakes in southeastern Finland, including cross-validation with independent test lakes. Boreal Environment Research 8, 215222.Google Scholar
Minyuk, P.S., Subbotnikova, T.V., Anderson, P.M., Lozhkin, A.V., 2013. Rock magnetic properties of the Lake Pernote sediments (Paramushir Island) as an indicator of the changes in sedimentation conditions. Izvestiya, Physics of the Solid Earth 49, 120129.Google Scholar
Paleoclimates of Arctic Lakes and Estuaries (PALE). 1994. Research Protocols for PALE: Paleoclimates of Arctic Lakes and Estuaries. PAGES (Past Global Changes) Workshop Report Series. PAGES, Bern, Switzerland.Google Scholar
Pietsch, T.W., Bogatov, V.V., Amaoka, K., Zhuravlev, Y.N., Barkalov, V.Y., Gage, S., Takahashi, H., et al., 2003. Biodiversity and biogeography of the islands of the Kuril Archipelago. Journal of Biogeography 30, 12971310.CrossRefGoogle Scholar
Pinegina, T., Kravchunovskaya, E.A., Lander, A.V., Kozhurin, A.I., Bourgeois, J., Martin, E.M., 2010. Holocene vertical movement of Kamchatsky Peninsula coast (Kamchatka) based on studies of marine terraces. [In Russian.] Bulletin of Kamchatka Association “Educational Scientific Center” Earth Sciences 1, 100116.Google Scholar
Pla, S., Paterson, A.M., Smol, J.P., Clark, B.J., Ingram, R., 2005. Spatial variability in water quality and surface sediment diatom assemblages in a complex lake basin: Lake of the Woods, Ontario, Canada. Journal of Great Lakes Research 31, 253266.Google Scholar
Proshkina-Lavrenko, A.I., Glezer, Z.I., Makarova, I.V. (Eds.) 1974. Diatoms of the USSR: Fossil and Modern. Vol. 1, [In Russian.] Nauka, Leningrad.Google Scholar
Razjigaeva, N.G., Ganzey, L.A., Belyanina, N.I., Grebennikova, T.A., Ganzey, K.S., 2008. Paleoenvironments and landscape history of minor Kuril Islands since the late glacial. Quaternary International 179, 8389.Google Scholar
Razjigaeva, N.G., Ganzey, L.A., Korotky, A.M., Grebennikova, T.A., Ganzey, K.S., 1996. Coastal dunes in north-west Pacific island areas. Proceedings of the International Coastal Symposium, Argentina. The Organizing Committee of the Symposium, pp. 73–80, Bahia Blanka, Argentina.Google Scholar
Razjigaeva, N.G., Grebennikova, T.A., Ganzey, L.A., Mokhova, L.M., Bazarova, V.B., 2004. The role of global and local factors in determining the middle to late Holocene environmental history of the South Kurile and Komandar Islands, northwestern Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology 209, 313333.Google Scholar
Razjigaeva, N.G., Korotky, A.M., Grebennikova, T.A., Ganzey, L.A., Mokhova, L.M., Bazarova, V.B., Sulerzhitsky, L.D., Lutaenko, K.A., 2002. Holocene climatic changes and environmental history of Iturup Island, Kurile Islands, northwestern Pacific. Holocene 12, 469480.CrossRefGoogle Scholar
Sakaguchi, Y., Kashima, K., Matusubara, A., 1985. Holocene marine terraces in Hokkaido and their sedimentary environments. [In Japanese.] Bulletin of the Department of Geography University of Tokyo 17, 117.Google Scholar
Sedaeva, O.S., Semakin, V.P, Shevchenko, G.V., 2012. Vertical displacement of the earth’s surface from sea level data in the south Kuril Islands as it relates to the Shikotan earthquake of October 4(5), 1994. [In Russian.] Russian Journal of Pacific Geology 31, 7986.Google Scholar
Stuiver, M., Reimer, P.J., 1993. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, 215230.CrossRefGoogle Scholar
Tuji, A., Houki, A., 2004. Taxonomy, ultrastructure, and biogeography of the Aulacoseira subarctica species complex. [In Japanese.] Bulletin of the National Science Museum Tokyo, Series B 30, 3554.Google Scholar
Urusov, V.M., Chipizubova, M.N., 2000. Vegetation of the Kuril Islands: Questions of Dynamics and Origin. [In Russian.] Russian Academy of Sciences, Far East Branch, Vladivostok, Russia.Google Scholar
van Dam, H., Mertens, A., Sinkeldam, J., 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28, 117133.Google Scholar
Walinsky, S.E., Prahl, F.G., Mix, A.C., Finney, B.P., Jaeger, J.M., Rosen, G.P., 2009. Distribution and composition of organic matter in surface sediments of coastal southeast Alaska. Continental Shelf Research 29, 15651579.Google Scholar
Wang, L., Lu, H., Liu, J., Gu, Z., Mingram, J., Chu, G., Li, J., et al., 2008. Diatom-based inference of variations in the strength of Asian winter monsoon winds between 17,500 and 6000 calendar years B.P. Journal of Geophysical Research 113, D21101. http://dx.doi.org/10.1029/2008JD010145.Google Scholar
Wright, H.E., Mann, D.H., Glaser, P.H., 1984. Piston corers for peat and lake sediments. Ecology 65, 657659.Google Scholar