Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-18T02:38:56.608Z Has data issue: false hasContentIssue false

Hydrological dynamics and fire history of the last 1300 years in western Siberia reconstructed from a high-resolution, ombrotrophic peat archive

Published online by Cambridge University Press:  20 January 2017

Mariusz Lamentowicz
Affiliation:
Laboratory of Wetland Ecology and Monitoring, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Dzięgielowa 27, PL–61 680 Poznań, Poland Department of Biogeography and Paleoecology, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań, Poland
Michał Słowiński
Affiliation:
Department of Environmental Resources and Geohazards, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Kopernika 19, 87-100 Toruń, Poland GFZ German Research Centre for Geosciences, Section 5.2–Climate Dynamics and Landscape Evolution, Telegrafenberg, D-14473 Potsdam, Germany
Katarzyna Marcisz
Affiliation:
Laboratory of Wetland Ecology and Monitoring, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Dzięgielowa 27, PL–61 680 Poznań, Poland Department of Biogeography and Paleoecology, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań, Poland
Małgorzata Zielińska
Affiliation:
Laboratory of Wetland Ecology and Monitoring, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Dzięgielowa 27, PL–61 680 Poznań, Poland Department of Biogeography and Paleoecology, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań, Poland
Karolina Kaliszan
Affiliation:
Laboratory of Wetland Ecology and Monitoring, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Dzięgielowa 27, PL–61 680 Poznań, Poland
Elena Lapshina
Affiliation:
Yugra State University, Chekhova 16, 628012 Khanty-Mansiysk, Russia
Daniel Gilbert
Affiliation:
Laboratoire de Chrono-environment, UMR 6249 CNRS, Université de Franche-Comté, 16 Route de Gray, 25030 Besancon Cedex, France
Alexandre Buttler
Affiliation:
Laboratoire de Chrono-environment, UMR 6249 CNRS, Université de Franche-Comté, 16 Route de Gray, 25030 Besancon Cedex, France Swiss Federal Research Institute-WSL, Community Ecology Research Unit, Station 2, CH-1015 Lausanne, Switzerland ÉcolePolytechniqueFédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental, Engineering (ENAC), Laboratory of Ecological Systems (ECOS), Station 2, CH-1015 Lausanne, Switzerland
Barbara Fiałkiewicz-Kozieł
Affiliation:
Department of Biogeography and Paleoecology, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań, Poland
Vincent E.J. Jassey
Affiliation:
Swiss Federal Research Institute-WSL, Community Ecology Research Unit, Station 2, CH-1015 Lausanne, Switzerland ÉcolePolytechniqueFédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental, Engineering (ENAC), Laboratory of Ecological Systems (ECOS), Station 2, CH-1015 Lausanne, Switzerland
Fatima Laggoun-Defarge
Affiliation:
Universitéd’Orléans, CNRS/INSU, BRGM, ISTO, UMR, 45071 Orléans, France
Piotr Kołaczek
Affiliation:
Department of Biogeography and Paleoecology, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań, Poland

Abstract

Siberian peatlands provide records of past changes in the continental climate of Eurasia. We analyzed a core from Mukhrino mire in western Siberia to reconstruct environmental change in this region over the last 1300 years. The pollen analysis revealed little variation of local pine-birch forests. A testate amoebae transfer function was used to generate a quantitative water-table reconstruction; pollen, plant macrofossils, and charcoal were analyzed to reconstruct changes in vegetation and fire activity. The study revealed that Mukhrino mire was wet until the Little Ice Age (LIA), when drought was recorded. Dry conditions during the LIA are consistent with other studies from central and eastern Europe, and with the pattern of carbon accumulation across the Northern Hemisphere. A significant increase in fire activity between ca. AD 1975 and 1990 may be associated with the development of the nearby city of Khanty-Mansiysk, as well as with the prevailing positive Arctic Oscillation.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, M., Anchukaitis, K.J., Asrat, A., Borgaonkar, H.P., Braida, M., Buckley, B.M., Büntgen, U., Chase, B.M., Christie, D.A., Cook, E.R., Curran, M.A.J., Diaz, H.F., Esper, J., Fan, Z.-X., Gaire, N.P., Ge, Q., Gergis, J., González-Rouco, J.F., Goosse, H., Grab, S.W., Graham, N., Graham, R., Grosjean, M., Hanhijärvi, S.T., Kaufman, D.S., Kiefer, T., Kimura, K., Korhola, A.A., Krusic, P.J., Lara, A., Lézine, A.-M., Ljungqvist, F.C., Lorrey, A.M., Luterbacher, J., Masson-Delmotte, V., McCarroll, D., McConnell, J.R., McKay, N.P., Morales, M.S., Moy, A.D., Mulvaney, R., Mundo, I.A., Nakatsuka, T., Nash, D.J., Neukom, R., Nicholson, S.E., Oerter, H., Palmer, J.G., Phipps, S.J., Prieto, M.R., Rivera, A., Sano, M., Severi, M., Shanahan, T.M., Shao, X., Shi, F., Sigl, M., Smerdon, J.E., Solomina, O.N., Steig, E.J., Stenni, B., Thamban, M., Trouet, V., Turney, C.S.M., Umer, M., van Ommen, T., Verschuren, D., Viau, A.E., Villalba, R., Vinther, B.M., von Gunten, L., Wagner, S., Wahl, E.R., Wanner, H., Werner, J.P., White, J.W.C., Yasue, K., and Zorita, E. Continental-scale temperature variability during the past two millennia. Nature Geoscience 6, (2013). 339346.Google Scholar
Balzter, H., Gerard, F.F., George, C.T., Rowland, C.S., Jupp, T.E., McCallum, I., Shvidenko, A., Nilsson, S., Sukhinin, A., Onuchin, A., and Schmullius, C. Impact of the Arctic Oscillation pattern on interannual forest fire variability in Central Siberia. Geophysical Research Letters 32, (2005). L14709 Google Scholar
Balzter, H., Gerard, F., George, C., Weedon, G., Grey, W., Combal, B., Bartholomé, E., Bartalev, S., and Los, S. Coupling of Vegetation Growing Season Anomalies and Fire Activity with Hemispheric and Regional-Scale Climate Patterns in Central and East Siberia. Journal of Climate 20, (2007). 37133729.Google Scholar
Barber, K.E. Peat stratigraphy and climatic change. A palaeoecological test of the theory of cyclic bog regeneration. (1981). A.A. Balkema, Rotterdam.Google Scholar
Barichivich, J., Briffa, K., Myneni, R., Schrier, G., Dorigo, W., Tucker, C., Osborn, T., and Melvin, T. Temperature and snow-mediated moisture controls of summer photosynthetic activity in Northern Terrestrial ecosystems between 1982 and 2011. Remote Sensing 6, (2014). 13901431.Google Scholar
Barnekow, L., Brageée, P., and Hammarlund, D. Boreal forest dynamics in north-eastern Sweden during the last 10,000 years based on pollen analysis. Vegetation History and Archaeobotany (2008). 114.Google Scholar
Beilman, D.W., MacDonald, G.M., Smith, L.C., and Reimer, P.J. Carbon accumulation in peatlands of West Siberia over the last 2000 years. Global Biogeochemical Cycles 23, (2009). Google Scholar
Berglund, B.E., and Ralska-Jasiewiczowa, M. Pollen analysis and pollen diagrams. Berglund, B.E. Handbook of Holocene Paleoecology and Paleohydrology. (1986). Wiley & Sons Ltd., Chichester-Toronto. 455484.Google Scholar
Beug, H.-J. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. (2004). Verlag Dr. Friedrich Pfeil, München.Google Scholar
Birks, H.J.B. Quantitative palaeoenvironmental reconstructions. Maddy, D., and Brew, J.S. Statistical Modelling of Quaternary Science Data. (1995). Quaternary Research Associacion, Cambridge. 161254.Google Scholar
Birks, H.H. Plant macrofossil introduction. Elias, S.A. Encyclopedia of Quaternary Science. (2007). Elsevier, Amsterdam. 22662288.Google Scholar
Bleuten, W., and Filippov, I. Hydrology of mire ecosystems in central West Siberia: the Mukhrino field station. Glagolev, M.V., and Lapshina, E.D. Transactions of UNESCO Department of Yugorsky State University "Dynamics of Environment and Global Climate Change". (2008). Google Scholar
Blundell, A., and Barber, K. A 2800-year palaeoclimatic record from Tore Hill Moss, Strathspey, Scotland: the need for a multi-proxy approach to peat-based climate reconstructions. Quaternary Science Reviews 24, (2005). 12611277.Google Scholar
Blundell, A., Charman, D.J., and Barber, K. Multiproxy late Holocene peat records from Ireland: towards a regional palaeoclimate curve. Journal of Quaternary Science 23, (2008). 5971.CrossRefGoogle Scholar
Bobrov, A.A., Charman, D.j., and Warner, B.G. Ecology of testate amoebae (Protozoa: Rhizopoda) on peatlands in Western Russia with special attention to niche separation in closely related taxa. Protist 150, (1999). 125136.CrossRefGoogle ScholarPubMed
Bobrov, A.A., Charman, D.J., and Warner, B.G. Ecology of testate amoebae from oligotrophic peatlands: specific features of polytypic and polymorphic species. Biology Bulletin of the Russian Academy of Sciences 29, (2002). 605617.Google Scholar
Bobrov, A.A., Siegert, C., Andreev, A.A., and Schirrmeister, L. Testaceans (Protozoa: Testacea) in Quaternary permafrost sediments of Bykovsky Peninsula, Arctic Yakutia. Biology Bulletin 30, (2003). 191206.Google Scholar
Bobrov, A.A., Wetterich, S., Beermann, F., Schneider, A., Kokhanova, L., Schirrmeister, L., Pestryakova, L.A., and Herzschuh, U. Testate amoebae and environmental features of polygon tundra in the Indigirka lowland (East Siberia). Polar Biology 36, (2013). 857870.CrossRefGoogle Scholar
Booth, R.K. Testate amoebae as proxies for mean annual water-table depth in Sphagnum-dominated peatlands of North America. Journal of Quaternary Science 23, (2007). 4357.Google Scholar
Booth, R.K., Notaro, M., Jackson, S.T., and Kutzbach, J.E. Widespread drought episodes in the western Great Lakes region during the past 2000 years: geographic extent and potential mechanisms. Earth and Planetary Science Letters 242, (2006). 415427.Google Scholar
Booth, R.K., Sullivan, M.E., and Sousa, V.A. Ecology of testate amoebae in a North Carolina pocosin and their potential use as environmental and paleoenvironmental indicators. Ecoscience 15, (2008). 277289.CrossRefGoogle Scholar
Booth, R.K., Lamentowicz, M., and Charman, D.J. Preparation and analysis of testate amoebae in peatland paleoenvironmental studies. Mires and Peat 7, 2010/11 (2010). 17.Google Scholar
Borren, W., Bleuten, W., and Lapshina, E.D. Holocene peat and carbon accumulation rates in the southern taiga of western Siberia. Quaternary Research 61, (2004). 4251.CrossRefGoogle Scholar
Bradshaw, R.H.W., Lindbladh, M., and Hannon, G.E. The role of fire in southern Scandinavian forests during the late Holocene. International Journal of Wildland Fire 19, (2010). 10401049.Google Scholar
Bronk Ramsey, C. Deposition models for chronological records. Quaternary Science Reviews 27, (2008). 4260.Google Scholar
Brown, K.J., and Giesecke, T. Holocene fire disturbance in the boreal forest of central Sweden. Boreas 43, (2014). 639651.Google Scholar
Carcaillet, C., Bergman, I., Delorme, S., Hornberg, G., and Zackrisson, O. Long-term fire frequency not linked to prehistoric occupations in northern Swedish boreal forest. Ecology 88, (2007). 465477.Google Scholar
Chambers, F.M., Beilman, D.W., and Yu, Z. Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics. Mires and Peat 7, (2011). 110.Google Scholar
Charman, D.J. Peatlands and Environmental Change. (2002). John Wiley & Sons, Chichester.Google Scholar
Charman, D.J., Blundell, A., Chiverrell, R.C., Hendon, D., and Langdon, P.G. Compilation of non-annually resolved Holocene proxy climate records: stacked Holocene peatland palaeo-water table reconstructions from northern Britain. Quaternary Science Reviews 25, (2006). 336350.Google Scholar
Charman, D., Blundell, A., and MEMBERS, A. A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands. Journal of Quaternary Science 22, (2007). 209221.Google Scholar
Charman, D.J., Beilman, D.W., Blaauw, M., Booth, R.K., Brewer, S., Chambers, F.M., Christen, J.A., Gallego-Sala, A., Harrison, S.P., Hughes, P.D.M., Jackson, S.T., Korhola, A., Mauquoy, D., Mitchell, F.J.G., Prentice, I.C., van der Linden, M., De Vleeschouwer, F., Yu, Z.C., Alm, J., Bauer, I.E., Corish, Y.M.C., Garneau, M., Hohl, V., Huang, Y., Karofeld, E., Le Roux, G., Loisel, J., Moschen, R., Nichols, J.E., Nieminen, T.M., MacDonald, G.M., Phadtare, N.R., Rausch, N., Sillasoo, Ü., Swindles, G.T., Tuittila, E.S., Ukonmaanaho, L., Väliranta, M., van Bellen, S., van Geel, B., Vitt, D.H., and Zhao, Y. Climate-related changes in peatland carbon accumulation during the last millennium. Biogeosciences 10, (2013). 929944.CrossRefGoogle Scholar
Dale, V.H., Joyce, L.A., McNulty, S., Neilson, R.P., Ayres, M.P., Flannigan, M.D., Hanson, P.J., Irland, L.C., Lugo, A.E., Peterson, C.J., Simberloff, D., Swanson, F.J., Stocks, B.J., and Wotton, B.M. Climate change and forest disturbances. Bioscience 51, (2001). 723734.CrossRefGoogle Scholar
Davis, M.B., and Deevey, E.S.J. Pollen accumulation rates: estimates from late-glacial sediment of Roger Lake. Science 145, (1964). 12931295.CrossRefGoogle Scholar
Dise, N.B. Peatland response to global change. Science 326, (2010). 810811.Google Scholar
Elger, K., Opel, T., Topp-Jřrgensen, E., and Rasch, M. INTERACT Station Catalogue. (2012). Aarhus University, Google Scholar
Feurdean, A., Galka, M., Kuske, E., Tantau, I., Lamentowicz, M., Florescu, G., Liakka, J., Hutchinson, S.M., Mulch, A., and Hickler, T. Last Millennium hydro-climate variability in Central-Eastern Europe (Northern Carpathians, Romania). The Holocene 25, (2015). 11791192.CrossRefGoogle Scholar
Fiałkiewicz-Kozieł, B., Kołaczek, P., Michczyński, A., and Piotrowska, N. The construction of a reliable absolute chronology for the last two millennia in an anthropogenically disturbed peat bog: limitations and advantages of using a radio-isotopic proxy and age–depth modelling. Quaternary Geochronology 25, (2015). 8395.Google Scholar
Filippov, I.V., and Lapshina, E.D. Peatland unit types of lake-bog systems in the Middle Priob’ie (Western Siberia). Ed, G.M.a.L. Transactions of UNESCO Department of Yugorsky State University "Dynamics of Environment and Global Climate Change. (2008). 115124.Google Scholar
Finsinger, W., and Tinner, W. Minimum count sums for charcoal-concentration estimates in pollen slides: accuracy and potential errors. Holocene 15, (2005). 293297.Google Scholar
Flannigan, M., Cantin, A.S., de Groot, W.J., Wotton, M., Newbery, A., and Gowman, L.M. Global wildland fire season severity in the 21st century. Forest Ecology and Management 294, (2013). 5461.Google Scholar
French, N.H.F., Goovaerts, P., and Kasischke, E.S. Uncertainty in estimating carbon emissions from boreal forest fires. Journal of Geophysical Research, [Atmospheres] 109, (2004). D14S08 Google Scholar
Gałka, M., Miotk-Szpiganowicz, G., Goslar, T., Jęśko, M., van der Knaap, W.O., and Lamentowicz, M. Palaeohydrology, fires and vegetation succession in the southern Baltic during the last 7500 years reconstructed from a raised bog based on multi-proxy data. Palaeogeography, Palaeoclimatology, Palaeoecology 370, (2013). 209221.CrossRefGoogle Scholar
Gałka, M., Tobolski, K., Górska, A., Milecka, K., Fiałkiewicz-Kozieł, B., and Lamentowicz, M. Disentangling the drivers for the development of a Baltic bog during the Little Ice Age in northern Poland. Quaternary International 328–329, (2014). 323337.Google Scholar
Gennaretti, F., Arseneault, D., Bégin, Y., and De Deyn, G. Millennial stocks and fluxes of large woody debris in lakes of the North American taiga. Journal of Ecology 102, (2013). 367380.CrossRefGoogle Scholar
Grimm, E.C. Tilia and Tilia Graph. (1991). Illinois State Museum., Google Scholar
Grospietsch, T. Wechseltierchen (Rhizopoden). (1958). Kosmos Verlag, Stuttgart.Google Scholar
Grosse-Brauckmann, G. Über pflanzliche Makrofossilien mitteleuropäischer Torfe. II. Weitere Reste (Früchte und Samen, Moose u.a.) und ihre Bestimmungsmöglichkeiten - On plant macrofossils in central European peat. II. Other remnants (e.g. fruits and seeds, mosses) and possibilities for their identification. Telma 4, (1974). 51117. (in German)Google Scholar
Grosse-Brauckmann, G. Über pflanzliche Makrofossilien mitteleuropäischer Torfe. III. Früchte, Samen und einige Gewebe (Fotos von fossilen Pflanzenresten) - On plant macrofossils in central European peat. III. Fruits, seeds and some tissues (photos of fossil plant remains). Telma 22, (1992). 53102. (in German)Google Scholar
Heiri, O., Lotter, A.F., and Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, (2001). 101110.Google Scholar
Hendon, D., and Charman, D.J. High-resolution peatland water-table changes for the past 200 years: the influence of climate and implications for management. The Holocene 14, (2004). 125134.Google Scholar
Hölzer, A. Die Torfmoose Südwestdeutschlands und der Nachbargebiete. (2010). Weissdorn - Verlag Jena, Jena.Google Scholar
Holzhauser, H., Magny, M., and Zumbuhl, H.J. Glacier and lake-level variations in west-central Europe over the last 3500 years. The Holocene 15, (2005). 789801.CrossRefGoogle Scholar
Hua, Q., Barbetti, M., and Rakowski, A.Z. Atmospheric Radiocarbon for the Period 1950-2010. Radiocarbon 55, (2013). 20592072.Google Scholar
Jones, P.D., and Mann, M.E. Climate over past millennia. Reviews of Geophysics (2004). 42 RG2002Google Scholar
Juggins, S. C2 User guide. Software for Ecological and Palaeoecological Data Analysis and Visualisation. (2003). University of Newcastle, Newcastle upon Tyne, UK.Google Scholar
Juggins, S., and Birks, J. Quantitative environmental reconstructions from biological data. Birks, H.J.B., Lotter, A.F., Juggins, S., and Smol, J.P. Tracking Environmental Change Using Lake Sediments. Developments In Paleoenvironmental Research (2012). Springer, 431494.Google Scholar
Kaislahti Tillman, P., Holzkämper, S., Kuhry, P., Sannel, A.B.K., Loader, N.J., and Robertson, I. Long-term climate variability in continental subarctic Canada: a 6200-year record derived from stable isotopes in peat. Palaeogeography, Palaeoclimatology, Palaeoecology 298, (2010). 235246.Google Scholar
Kasischke, E.S., Hyer, E.J., Novelli, P.C., Bruhwiler, L.P., French, N.H.F., Sukhinin, A.I., Hewson, J.H., and Stocks, B.J. Influences of boreal fire emissions on Northern Hemisphere atmospheric carbon and carbon monoxide. Global Biogeochemical Cycles 19, (2005). GB1012 CrossRefGoogle Scholar
Kirilenko, A.P., and Sedjo, R.A. Climate change impacts on forestry. Proceedings of the National Academy of Sciences of the United States of America 104, (2007). 1969719702.Google Scholar
Kremenetski, K.V., Velichko, A.A., Borisova, O.K., MacDonald, G.M., Smith, L.C., Frey, K.E., and Orlova, L.A. Peatlands of the Western Siberian lowlands: current knowledge on zonation, carbon content and Late Quaternary history. Quaternary Science Reviews 22, (2003). 703723.Google Scholar
Kurina, I.V., Preis, Y.I., and Bobrov, A.A. Testate amoebae inhabiting middle taiga bogs in Western Siberia. Biology Bulletin 37, (2010). 357362.Google Scholar
Laine, J., Harju, P., Timonen, T., Laine, A., Tuittila, E.S., Minkkinen, K., and Vasander, H. The Intricate Beauty of Sphagnum Mosses e a Finnish Guide to Identification. (2011). University of Helsinki Department of Forest Sciences Publications, Helsinki.Google Scholar
Lamentowicz, M., and Mitchell, E.A.D. The ecology of testate amoebae (Protists) in Sphagnum in north-western Poland in relation to peatland ecology. Microbial Ecology 50, (2005). 4863.Google Scholar
Lamentowicz, M., Cedro, A., Gałka, M., Miotk-Szpiganowicz, G., Mitchell, E.A.D., Pawlyta, J., and Goslar, T. Last millennium palaeoenvironmental changes from a Baltic bog (Poland) inferred from stable isotopes, pollen, plant macrofossils and testate amoebae. Palaeogeography, Palaeoclimatology, Palaeoecology 265, (2008). 93106.Google Scholar
Lamentowicz, M., Milecka, K., Gałka, M., Cedro, A., Pawlyta, J., Piotrowska, N., Lamentowicz, Ł., and van der Knaap, W.O. Climate- and human-induced hydrological change since AD 800 in an ombrotrophic mire in Pomerania (N Poland) tracked by testate amoebae, macro-fossils, pollen, and tree-rings of pine. Boreas 38, (2009). 214229.Google Scholar
Lamentowicz, M., Gałka, M., Pawlyta, J., Lamentowicz, Ł., Goslar, T., and Miotk-Szpiganowicz, G. Climate change and human impact in the southern Baltic during the last millennium reconstructed from an ombrotrophic bog archive. Studia Quaternaria 28, (2011). 316.Google Scholar
Lapshina, E.D., and Plogova, N.N. Spatial dynamics of peat growth and carbon accumulation in sphagnum bogs (Boreal West Siberia), West Siberian Peatlands and Carbon Cycle: past and present. Proceedings of the Third International Field Symposium Khanty-Mansiysk, June 27 - July 5, 2011 (2011). Google Scholar
Lapshina, E.D., Pologova, N.N., and E.Ya, M. Pattern of development and carbon accumulation in homogenous Sphagnum fuscum-peat deposit on the south of West Siberia. Vasiliev, S., Titlyanova, A., and Velochko, A. West Siberian Peatlands and Carbon Cycle: past and present. Proceedings of International Field Symposium, Noyabrsk August 18 - 22, 2001. (2001). 101104.Google Scholar
Lavoie, C., and Pellerin, S. Fires in temperate peatlands (southern Quebec): past and recent trends. Canadian Journal of Botany 85, (2007). 263272.Google Scholar
Legendre, P., and Gallagher, E.D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, (2001). 271280.Google Scholar
Liss, O.L., Abramova, K.I., and Avetov, L.I. Bog Ecosystems of West Siberia and Their Environmental Importance. (2001). Publishing House ‘Grif i Ko’, Tula.Google Scholar
Loisel, J., and Yu, Z. Surface vegetation patterning controls carbon accumulation in peatlands. Geophysical Research Letters 40, (2013). 55085513.Google Scholar
Loisel, J., Yu, Z., Beilman, D., Philip, C., Jukka, A., David, A., Andersson, S., Fiałkiewicz-Kozieł, B., Barber, K., Belyea, L., Bunbury, J., Chambers, F., Charman, D., de Vleeschouwer, F., Finkelstein, S., Garneau, M., Hendon, D., Holmquist, J., Hughes, P., Jones, M., Klein, E., Kokfelt, U., Korhola, A., Kuhry, P., Lamarre, A., Lamentowicz, M., Large, D., Lavoie, M., MacDonald, G., Magnan, G., Gałka, M., Mathijssen, P., Mauquoy, D., McCarroll, J., Moore, T., Nichols, J., O’Reilly, B., Oksanen, P., Peteet, D., Rchard, P., Robinson, S., Rundgren, M., Sannel, B., Tuittila, E.-S., Turetsky, M., Valiranta, M., van der Linden, M., van Geel, B., van Bellen, S., Vitt, D., Zhao, Y., and Zhou, W. A database and synthesis of existing data for northern peatland soil properties and Holocene carbon accumulation. Holocene 24, (2014). 10281042.Google Scholar
Magny, M., Gauthier, E., Vannière, B., and Peyron, O. Palaeohydrological changes and humanimpact history over the last millennium recorded at Lake Joux in the Jura Mountains, Switzerland. The Holocene 18, (2008). 255265.CrossRefGoogle Scholar
Magny, M., Arnaud, F., Holzhauser, H., Chapron, E., Debret, M., Desmet, M., Leroux, A., Millet, L., Revel, M., and Vannière, B. Solar and proxy-sensitivity imprints on paleohydrological records for the last millennium in west-central Europe. Quaternary Research 73, (2010). 173179.Google Scholar
Marcisz, K., Tinner, W., Colombaroli, D., Kołaczek, P., Słowiński, M., Fiałkiewicz-Kozieł, B., Łokas, E., and Lamentowicz, M. Long-term hydrological dynamics and fire history during the last 2000 years in CE Europe reconstructed from a high-resolution peat archive. Quaternary Science Reviews 112, (2015). 138152.Google Scholar
Mazei, Y.A., and Embulaeva, E.A. Changes of soil-inhabited testate amoebae communities along forest-steppe gradient in the middle Volga region. Arid Ecosystems 15, (2009). 1323.Google Scholar
Mazei, Y., and Kabanov, A.N. Testate amoebae from the sedge-sphagnum forested mire in the north of Karelia (Russia). Izv. Penza. gos. pedagog. univ. im.i Vv. Gg. Bbelinskogo 10, (2008). 101104.Google Scholar
Mazei, Y., and Tsyganov, A.N. Freshwater Testate Amoebae. (2006). KMK, Moscow.Google Scholar
Mazei, Y.A., Tsyganov, A.N., and Bubnova, O.A. Structure of a community of testate amoebae in a Sphagnum dominated bog in upper sura flow (Middle Volga Territory). Biology Bulletin 34, (2007). 382394.Google Scholar
Mazei, Y.A., Tsyganov, A.N., and Bubnoba, O.A. The structure of amoeba communities in boggy biotopes of the southern Taiga (Russian European Part). Ucpiechi Sovriemennoi Biologii 129, (2009). 6777.Google Scholar
Moore, P.D., Webb, J.A., and Collinson, M.E. Pollen Analysis. (1991). Blackwell Scientific Publication, Google Scholar
Muller, S., Bobrov, A.A., Schirrmeister, L., Andreev, A.A., and Tarasov, P.E. Testate amoebae record from the Laptev Sea coast and its implication for the reconstruction of Late Pleistocene and Holocene environments in the Arctic Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology 271, (2009). 301315.CrossRefGoogle Scholar
Niklasson, M., Lindbladh, M., and Björkman, L. A long-term record of Quercus decline, logging and fires in a southern Swedish Fagus-Picea forest. Journal of Vegetation Science 13, (2002). 765774.Google Scholar
Ogden, C.G., and Hedley, R.H. An Atlas of Freshwater Testate Amoebae. (1980). Oxford University Press, London.Google Scholar
Ohlson, M., Brown, K.J., Birks, H.J.B., Grytnes, J.A., Hörnberg, G., Niklasson, M., Seppä, H., and Bradshaw, R.H.W. Invasion of Norway spruce diversifies the fire regime in boreal European forests. Journal of Ecology 99, (2011). 395403.Google Scholar
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., and Wagner, H. Vegan: Community Ecology Package. R package version 1.17-7. (2011). Google Scholar
Payne, R.J., and Mitchell, E.A.D. How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. Journal of Paleolimnology 42, (2008). 483495.Google Scholar
Payne, R.J., Lamentowicz, M., van der Knaap, W.O., van Leeuwen, J.F.N., Mitchell, E.A.D., and Mazei, Y. Testate amoebae in pollen slides. Review of Palaeobotany and Palynology 173, (2012). 6879.Google Scholar
Payne, R.J., Jassey, V.E.J., Leith, I.D., Sheppard, L.J., Dise, N.B., and Gilbert, D. Ammonia exposure promotes algal biomass in an ombrotrophic peatland. Soil Biology and Biochemistry 57, (2013). 936938.Google Scholar
Peregon, A., Uchida, M., and Shibata, Y. Sphagnum peatland development at their southern climatic range in West Siberia: trends and peat accumulation patterns. Environmental Research Letters 2, (2007). CrossRefGoogle Scholar
Peregon, A., Uchida, M., and Shibata, Y. Sphagnum peatland development at their southern climatic range in West Siberia: trends and peat accumulation patterns. Environmental Research Letters 2, (2007). 045014 Google Scholar
Pitkänen, A., Turunen, J., Tahvanainen, T., and Tolonen, K. Holocene vegetation history from the Salym-Yugan Mire Area, West Siberia. Holocene 12, (2002). 353362.Google Scholar
Rosén, P., and Hammarlund, D. Effects of climate, fire and vegetation development on Holocene changes in total organic carbon concentration in three boreal forest lakes in northern Sweden. Biogeosciences 4, (2007). 975984.Google Scholar
Qin, Y.M., Mitchell, E.A.D., Lamentowicz, M., Payne, R.J., Lara, E., Gu, Y.S., Huang, X.Y., and Wang, H.M. Ecology of testate amoebae in peatlands of central China and development of a transfer function for paleohydrological reconstruction. Journal of Paleolimnology 50, (2013). 319330.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatte, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M., and van der Plicht, J. Intcal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55, (2013). 18691887.Google Scholar
Seddon, A.W.R., Mackay, A.W., Baker, A.G., Birks, H.J.B., Breman, E., Buck, C.E., Ellis, E.C., Froyd, C.A., Gill, J.L., Gillson, L., Johnson, E.A., Jones, V.J., Juggins, S., Macias-Fauria, M., Mills, K., Morris, J.L., Nogues-Bravo, D., Punyasena, S.W., Roland, T.P., Tanentzap, A.J., Willis, K.J., Aberhan, M., van Asperen, E.N., Austin, W.E.N., Battarbee, R.W., Bhagwat, S., Belanger, C.L., Bennett, K.D., Birks, H.H., Ramsey, C.B., Brooks, S.J., de Bruyn, M., Butler, P.G., Chambers, F.M., Clarke, S.J., Davies, A.L., Dearing, J.A., Ezard, T.H.G., Feurdean, A., Flower, R.J., Gell, P., Hausmann, S., Hogan, E.J., Hopkins, M.J., Jeffers, E.S., Korhola, A.A., Marchant, R., Kiefer, T., Lamentowicz, M., Larocque-Tobler, I., Lopez-Merino, L., Liow, L.H., McGowan, S., Miller, J.H., Montoya, E., Morton, O., Nogue, S., Onoufriou, C., Boush, L.P., Rodriguez-Sanchez, F., Rose, N.L., Sayer, C.D., Shaw, H.E., Payne, R., Simpson, G., Sohar, K., Whitehouse, N.J., Williams, J.W., and Witkowski, A. Looking forward through the past: identification of 50 priority research questions in palaeoecology. Journal of Ecology 102, (2014). 256267.Google Scholar
Sillasoo, U., Väliranta, M., and Tuittila, E.S. Fire history and vegetation recovery in two raised bogs at the Baltic Sea. Journal of Vegetation Science 22, (2011). 10841093.Google Scholar
Solomeshch, A.I. The West Siberian Lowland. Fraser, L.H., and Keddy, P.A. The World’s Largest Wetlands. Ecology and Conservation (2005). 1162.Google Scholar
Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen and Spores 16, (1971). 615621.Google Scholar
Stocks, B.J., Wotton, B.M., Flannigan, M.D., Fosberg, M.A., Cahoon, D.R., and Goldammer, J.G. Boreal forest fire regimes and climate change. Beniston, M., and Verstraete, M. Remote Sensing and Climate Modeling: Synergies and Limitations. (2001). Springer, Netherlands. 233246.Google Scholar
Stocks, B.J., Mason, J.A., Todd, J.B., Bosch, E.M., Wotton, B.M., Amiro, B.D., Flannigan, M.D., Hirsch, K.G., Logan, K.A., Martell, D.L., and Skinner, W.R. Large forest fires in Canada, 1959–1997. Journal of Geophysical Research 108, (2002). Google Scholar
Sukhinin, A.I., French, N.H.F., Kasischke, E.S., Hewson, J.H., Soja, A.J., Csiszar, I.A., Hyer, E.J., Loboda, T., Conrad, S.G., Romasko, V.I., Pavlichenko, E.A., Miskiv, S.I., and Slinkina, O.A. AVHRR-based mapping of fires in Russia: New products for fire management and carbon cycle studies. Remote Sensing of Environment 93, (2004). 546564.Google Scholar
Swindles, G.T., Plunkett, G., and Roe, H.M. A multiproxy climate record from a raised bog in County Fermanagh, Northern Ireland: a critical examination of the link between bog surface wetness and solar variability. Journal of Quaternary Science 22, (2007). 667679.Google Scholar
Swindles, G.T., Morris, P.J., Baird, A.J., Blaauw, M., and Plunkett, G. Ecohydrological feedbacks confound peat-based climate reconstructions. Geophysical Research Letters 39, (2012). CrossRefGoogle Scholar
Swindles, G.T., Watson, E., Turner, T.E., Galloway, J.M., Hadlari, T., Wheeler, J., and Bacon, K.L. Spheroidal carbonaceous particles are a defining stratigraphic marker for the Anthropocene. Scientific Reports 5, (2015). 10264 Google Scholar
Tallantire, P.A. The early-Holocene spread of hazel (Corylus avellana L.) in Europe north and west of the Alps: An ecological hypothesis. Holocene 12, (2002). 8196.Google Scholar
Team, R.D.C. R: A language and environment for statistical computing. (2013). R Foundation for Statistical Computing, Vienna, Austria. 3-900051-00-3 (URL http://www.R-project.org)Google Scholar
Tinner, W., and Hu, F.S. Size parameters, size-class distribution and area-number relationship of microscopic charcoal: relevance for fire reconstruction. The Holocene 13, (2003). 499505.Google Scholar
Tryterud, E. Forest fire history in Norway: from fire-disturbed pine forests to fire-free spruce forests. Ecography 26, (2003). 161170.Google Scholar
Tobolski, K. Przewodnik do oznaczania torfów i osadów jeziornych, Vademecum Geobotanicum. (2000). Wydawnictwo Naukowe PWN, Warszawa. 508 ss Google Scholar
Tolonen, K., Warner, B.G., and Vasander, H. Ecology of Testaceans (Protozoa: Rhizopoda) in mires in southern Finland: II. Multivariate analysis. Archiv für Protistenkunde 144, (1994). 97112.Google Scholar
Tsyganov, A.N., Komarov, A.A., Mitchell, E.A.D., Shimano, S., Smirnova, O.V., Aleynikov, A.A., and Mazei, Y.A. Additive partitioning of testate amoeba species diversity across habitat hierarchy within the pristine southern taiga landscape (Pechora-Ilych Biosphere Reserve, Russia). European Journal of Protistology 51, (2015). 4254.Google Scholar
Turetsky, M.R., Benscoter, B., Page, S., Rein, G., van der Werf, G.R., and Watts, A. Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience 8, (2015). 1114.Google Scholar
Turner, T.E., Swindles, G.T., and Roucoux, K.H. Late Holocene ecohydrological and carbon dynamics of a UK raised bog: impact of human activity and climate change. Quaternary Science Reviews 84, (2014). 6585.Google Scholar
Turunen, J., Tahvanainen, T., Tolonen, K., and Pitkanen, A. Carbon accumulation in West Siberian mires, Russia. Global Biogeochemical Cycles 15, (2001). 285296.Google Scholar
Tweiten, M.A., Hotchkiss, S.C., Booth, R.K., Calcote, R.R., and Lynch, E.A. The response of a jack pine forest to late-Holocene climate variability in northwestern Wisconsin. Holocene 19, (2009). 10491061.Google Scholar
van Bellen, S., Garneau, M., Ali, A.A., and Bergeron, Y. Did fires drive Holocene carbon sequestration in boreal ombrotrophic peatlands of eastern Canada?. Quaternary Research 78, (2012). 5059.Google Scholar
Van Bellen, S., Mauquoy, D., Payne, R.J., Roland, T.P., Daley, T.J., Hughes, P.D.M., Loader, N.J., Street-Perrott, F.A., Rice, E.M., and Pancotto, V.A. Testate amoebae as a proxy for reconstructing Holocene water table dynamics in southern Patagonian peat bogs. Journal of Quaternary Science 29, (2014). 463474.Google Scholar
van der Knaap, W.O., Lamentowicz, M., van Leeuwen, J.F.N., Hangartner, S., Leuenberger, M., Mauquoy, D., Goslar, T., Mitchell, E.A.D., Lamentowicz, Ł., and Kamenik, C. A multi-proxy, high-resolution record of peatland development and its drivers during the last millennium from the subalpine Swiss Alps. Quaternary Science Reviews 30, (2011). 34673480.Google Scholar
Ward, S.E., Ostle, N.J., Oakley, S., Quirk, H., Henrys, P.A., and Bardgett, R.D. Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition. Ecology Letters 16, (2013). 12851293.Google Scholar
Wotton, B.M., and Flannigan, M.D. Length of the fire season in a changing climate. Forest Chronicle 69, (1993). 187192.Google Scholar
Zackrisson, O. Influence of forest fire on the north Swedish boreal forest. Oikos 29, (1977). 2232.CrossRefGoogle Scholar
Zobel, M. Autogenic succession in boreal mires – a review. Folia Geobotanica et Phytotaxonomic 23, (1988). 417445.Google Scholar