Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-23T14:02:57.537Z Has data issue: false hasContentIssue false

Aeolian dynamics at the northern edge of Deliblato (Banat) Sand Sea, Vojvodina, Serbia, at the time of the last deglaciation

Published online by Cambridge University Press:  03 May 2024

Rastko S. Marković*
Affiliation:
Department for Geography, Faculty of Sciences, University of Niš, Višegradska 33, 18000 Niš, Serbia
Zoran M. Perić
Affiliation:
Lund Luminescence Laboratory, Department of Geology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden
Milivoj B. Gavrilov
Affiliation:
Department of Geography, Tourism and Hotel management, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
Slobodan B. Marković
Affiliation:
Department of Geography, Tourism and Hotel management, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia Serbian Academy of Arts and Sciences, Knez Mihajlova 35, 11000 Belgrade, Serbia University of Montenegro, Cetinjska 2, 81000 Podgorica, Montenegro
Jef Vandenberghe
Affiliation:
Institute of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
Randall J. Schaetzl
Affiliation:
Department of Geography, Environment, and Spatial Sciences, 673 Auditorium Drive, Michigan State University, East Lansing, MI 48824, USA
Igor Obreht
Affiliation:
Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Leobener Str. 8, 28359 Bremen, Germany
Tamás Bartyik
Affiliation:
Geomorphological and Geochronological Research Group, Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, Egyetemu. 2-6, Szeged, 6722, Hungary
Milica G. Radaković
Affiliation:
Department of Geography, Tourism and Hotel management, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
Aleksandar Radivojević
Affiliation:
Department for Geography, Faculty of Sciences, University of Niš, Višegradska 33, 18000 Niš, Serbia
Miloš Marjanović
Affiliation:
Department of Geography, Tourism and Hotel management, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
Tin Lukić
Affiliation:
Department of Geography, Tourism and Hotel management, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
György Sipos
Affiliation:
Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Leobener Str. 8, 28359 Bremen, Germany
*
Corresponding author: Rastko S. Marković; Email: <rastko.markovic@pmf.edu.rs>

Abstract

The Deliblato (Banat) Sand Sea, which is one of the largest areas of аeolian sand in Europe, is located near the Iron Gate, which marks the crossing of the Danube River through the biggest gorge of this river. Here, Danubian alluvium has served as the sand source for the Banat Sand Sea, which was formed primarily through southeasterly (Košava) winds. Utilizing a multi-proxy approach, the objective of this study is to gain a better understanding of the environmental dynamics of the Banat Sand Sea. To achieve this goal, we conducted an analysis of an archive representing an approximately 20-m-thick dune formation on the northern edge of this dune field. Using optically stimulated luminescence (OSL) dating, we calculated aeolian sedimentation rates and dune ages. Sand was deposited here approximately between 17 ka and 13 ka. Magnetic susceptibility, grain size, and colorimetric analyses were interpreted in terms of local paleoenvironmental conditions. Calculated sedimentation rates (SR) indicate intensive aeolian deposition during the study period that range from 483 cm/ka to 502 cm/ka. We compared our data with regional and other European archives, as well as with climatic variations recorded in the Greenland ice core North Greenland Ice Core Project (NGRIP).

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Quaternary Research Center

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albani, S., Mahowald, N.M., 2019. Paleodust insights into dust impacts on climate. Journal of Climate 32, 78977913.CrossRefGoogle Scholar
Bertran, P., Liard, M., Sitzia, L., Tissoux, H., 2016. A map of Pleistocene aeolian deposits in Western Europe, with special emphasis on France. Journal of Quaternary Science 31, 844856.CrossRefGoogle Scholar
Björck, S., Walker, M.J., Cwynar, L.C., Johnsen, S., Knudsen, K.L., Lowe, J.J., Wohlfarth, B., 1998. An event stratigraphy for the last termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group. Journal of Quaternary Science 13, 283292.3.0.CO;2-A>CrossRefGoogle Scholar
Blaauw, M., 2010. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology 5, 512518.CrossRefGoogle Scholar
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.CrossRefGoogle Scholar
Bohncke, S.J.P., Vandenberghe, J., Huijzer, A.S., 1993. Periglacial environments during the Weichselian Late Glacial in the Maas valley, the Netherlands. Netherlands Journal of Geosciences = Geologie en Mijnbouw 72, 193210.Google Scholar
Bohncke, S., Kasse, C., Vandenberghe, J., 1995. Climate induced environmental changes during the Vistulian Lateglacial at Zabinko, Poland. Quaestiones Geographicae 4, 4364.Google Scholar
Borsy, Z., 1990. Evolution of the alluvial fans of the Alföld. In: Rachocki, A.H., Church, M. (Eds.), Alluvial Fans. A Field Approach. John Wiley & Sons, New York, pp. 229246.Google Scholar
Borsy, Z., 1991. Blown sand territories in Hungary. In: Kozarski, S. (Ed.), Late Vistulian (= Weichselian) and Holocene Aeolian Phenomena in Central and Northern Europe. Zeitschrift für Geomorphologie Supplementband 90, 114.Google Scholar
Bøtter-Jensen, L., Thomsen, K.J., Jain, M., 2010. Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry. Radiation Measurements 45, 253257.CrossRefGoogle Scholar
Brennan, B.J., 2003. Beta doses to spherical grains. Radiation Measurements 37, 299303.CrossRefGoogle Scholar
Brennan, B.J., Lyons, R.G., Phillips, S.W., 1991. Attenuation of alpha particle track dose for spherical grains. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 18, 249253.CrossRefGoogle Scholar
Buggle, B., Glaser, B., Zöller, L., Hambach, U., Marković, S., Glaser, I., Gerasimenko, N., 2008. Geochemical characterization and origin of southeastern and eastern European loesses (Serbia, Romania, Ukraine). Quaternary Science Reviews 27, 10581075.CrossRefGoogle Scholar
Bukurov, B., 1954. Geomorphological opportunities of Banat Danube region. Collection of Papers 8, 5588. [in Serbian]Google Scholar
Bukurov, B., 1984. Geomorfološki Problem Banata. Vojvođanska Akademija Nauka i Umetnosti, Novi Sad [Department of social sciences and arts. Vojvodinian Academy of Sciences and Arts, Novi Sad], 155 pp.Google Scholar
Bukurov, B., Stanković, B., Vasić, A., 1982. Sintetička Razmatranja Geomorfoloških Problema na Teritoriji Vojvodine. Vojvođanska Akademija Nauka i Umetnosti.Google Scholar
Bulla, B., 1938. Der Pleistocäne Löss im Karpathen Becken III. Földtani Közlöny 68, 3358.Google Scholar
Buró, B., Sipos, G., Lóki, J., Andrási, B., Félegyházi, E., Négyesi, G., 2016. Assessing late Pleistocene and Holocene phases of aeolian activity on the Nyírség alluvial fan, Hungary. Quaternary International 425, 183195.CrossRefGoogle Scholar
Cholnoky, J., 1902. A futóhomok mozgá sán aktörvényei. Földtani Közlöny 32, 638.Google Scholar
Cholnoky, J., 1910. Az Alföld felszine. Földrajzi Közlemenyek 38, 413436.Google Scholar
Commission Internationale de l'Éclairage (CIE), 1978. Recommendations on Uniform Color Spaces, Color-difference Equations, Psyhometric Color Terms. Supplement No. 2 to CIE Publication No. 15, Bureau Central de la CIE, 21 pp.Google Scholar
Constantin, S., Bojar, A.V., Lauritzen, S.E., Lundberg, J., 2007. Holocene and late Pleistocene climate in the sub-Mediterranean continental environment: a speleothem record from Poleva Cave (Southern Carpathians, Romania). Palaeogeography, Palaeoclimatology, Palaeoecology 243, 322338.CrossRefGoogle Scholar
De Ploey, J., 1977. Some experimental data on slopewash and wind action with reference to Quaternary morphogenesis in Belgium. Earth Surface Processes 2, 101115.CrossRefGoogle Scholar
Duller, G.A.T., 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37, 161165.CrossRefGoogle Scholar
Duller, G.A.T., 2015. The Analyst software package for luminescence data: overview and recent improvements. Ancient TL 33, 3542.Google Scholar
Durcan, J.A., King, G E., Duller, G.A., 2015. DRAC: Dose Rate and Age Calculator for trapped charge dating. Quaternary Geochronology 28, 5461.CrossRefGoogle Scholar
Evans, M.E., Heller, F., 2001. Magnetism of loess/palaeosol sequences: recent developments. Earth-Science Reviews 54, 129144.CrossRefGoogle Scholar
Fenn, K., Millar, I.L., Durcan, J.A., Thomas, D.S., Banak, A., Marković, S.B., Veres, D., Stevens, T., 2022. The provenance of Danubian loess. Earth-Science Reviews 226, 103920. https://doi.org/10.1016/j.earscirev.2022.103920.CrossRefGoogle Scholar
Gábris, G., 2003. A földtörténet utolsó 30 ezer évének szakaszai és futóhomok mozgásának föbb periódusai Magyarországon. Földrajzi Kõzlemények 51, 114.Google Scholar
Gavrilov, M. B., Marković, S. B., Schaetzl, R. J., Tošić, I., Zeeden, C., Obreht, I., Sipos, G., et al., 2018. Prevailing surface winds in Northern Serbia in the recent and past time periods; modern- and past dust deposition. Aeolian Research 31, 117129.CrossRefGoogle Scholar
Gkinis, V., Simonsen, S.B., Buchardt, S.L., White, J.W.C., Vinther, B M., 2014. Water isotope diffusion rates from the NorthGRIP ice core for the last 16,000 years—glaciological and paleoclimatic implications. Earth and Planetary Science Letters 405, 132141.CrossRefGoogle Scholar
Goździk, J., 1991. Sedimentological record of aeolian processes from the Upper Plenivistulian and the turn of Pleni- and Late Vistulian in Central Poland. Zeitschrift für Geomorphologie, Supplementband 90, 5160.Google Scholar
Hansen, V., Murray, A., Buylaert, J.P., Yeo, E.Y., Thomsen, K., 2015. A new irradiated quartz for beta source calibration. Radiation Measurements 81, 123127.CrossRefGoogle Scholar
Haslett, J., Parnell, A., 2008. A simple monotone process with application to radiocarbon-dated depth chronologies. Journal of the Royal Statistical Society Series C: Applied Statistics 57, 399418.CrossRefGoogle Scholar
Heller, F., Evans, M.E., 1995. Loess magnetism. Reviews of Geophysics 33, 211240.CrossRefGoogle Scholar
Kasse, C., 1997. Cold-climate aeolian sand-sheet formation in north-western Europe (c. 14–12.4 ka); a response to permafrost degradation and increased aridity. Permafrost and Periglacial Processes 8, 295311.3.0.CO;2-0>CrossRefGoogle Scholar
Kasse, C., 2002. Sandy aeolian deposits and environments and their relation to climate during the last glacial maximum and lateglacial in northwest and central Europe. Progress in Physical Geography 26, 507532.CrossRefGoogle Scholar
Kasse, C., Vandenberghe, D., De Corte, F., Van den Haute, P., 2007. Late Weichselian fluvio-aeolian sands and coversands of the type locality Grubbenvorst (southern Netherlands): sedimentary environments, climate record and age. Journal of Quaternary Science 22, 695708.CrossRefGoogle Scholar
Kiss, T., Sipos, G., Kovács, F., 2009. Human impact on fixed sand dunes revealed by morphometric analysis. Earth Surface Processes and Landforms 34, 700711.CrossRefGoogle Scholar
Kiss, T., Györgyövics, K., Sipos, G., 2012a. Homokformák morfológiai tulajdonságainak és korának vizsgálata Belső-Somogy területén. Földrajzi Kõzlemények 136, 361375.Google Scholar
Kiss, T., Sipos, G., Mauz, B., Mezősi, G., 2012b. Holocene aeolian sand mobilization, vegetation history and human impact on the stabilized sand dune area of the southern Nyírség, Hungary. Quaternary Research 78, 492501.CrossRefGoogle Scholar
Koster, E.A., 1988. Ancient and modern cold-climate aeolian sand deposition: a review. Journal of Quaternary Science 3, 6983.CrossRefGoogle Scholar
Kozarski, S., 1987. Pleni and late Vistulian aeolian phenomena in Poland: new occurrences, palaeoenvironmental and stratigraphic interpretations. Acta Geographica ac Geologica et Meteorologica Debrecina 26–27, 3145.Google Scholar
Kun, Á., Katona, O., Sipos, G., Barta, K., 2013. Comparison of pipette and laser diffraction methods in determining the granulometric content of fluvial sediment samples. Journal of Environmental Geography 6, 4954.CrossRefGoogle Scholar
Lehmkuhl, F., Bösken, J., Hošek, J., Sprafke, T., Marković, S.B., Obreht, I., Hambach, U., et al., 2018. Loess distribution and related Quaternary sediments in the Carpathian Basin. Journal of Maps 14, 661670.CrossRefGoogle Scholar
Liritzis, I., Stamoulis, K., Papachristodoulou, C., Ioannides, K., 2013. A re-evaluation of radiation dose-rate conversion factors. Mediterranean Archaeology and Archaeometry 13(3), 115.Google Scholar
Lougheed, B.C., Obrochta, S.P., 2019. A rapid, deterministic age-depth modeling routine for geological sequences with inherent depth uncertainty. Paleoceanography and Paleoclimatology 34, 122133.CrossRefGoogle Scholar
Lukić, T., Basarin, B., Buggle, B., Marković, S.B., Tomović, V.M., Popov Raljić, J., Hrnjak, I., Timar-Gabor, A., Hambach, U., Gavrilov, M.B., 2014. A joined rock magnetic and colorimetric perspective on the late Pleistocene climate of Orlovat loess site (Northern Serbia). Quaternary International 334–335, 179188.CrossRefGoogle Scholar
Lukić, T., Radaković, M.G., Marković, R.S., Thompson, W.P., Ponjiger, T.M., Basarin, B., Tomić, N., et al., 2023. Initial results of the colorimetric indices of the oldest exposed pedocomplex (Titel loess plateau, Serbia). Geologia Croatica 76, 7385.CrossRefGoogle Scholar
Maher, B.A., 2011. The magnetic properties of Quaternary aeolian dusts and sediments, and their palaeoclimatic significance. Aeolian Research 3, 87144.CrossRefGoogle Scholar
Manikowska, B., 1994. Etat des etudes des processus eoliens dans la region de Lodz [Pologne Centrale]. Biuletyn Peryglacjalny 33, 107131.Google Scholar
Marković, S. B., Bokhorst, M. P., Vandenberghe, J., McCoy, W. D., Oches, E. A., Hambach, U., Gaudenyi, T., et al., 2008. Late Pleistocene loess–palaeosol sequences in the Vojvodina region, north Serbia. Journal of Quaternary Science 23, 7384.CrossRefGoogle Scholar
Marković, S. B., Hambach, U., Stevens, T., Kukla, G.J., Heller, F., McCoy, W.D., Oches, E.A., Buggle, B., Zöller, L., 2011. The last million years recorded at the Stari Slankamen (Northern Serbia) loess–palaeosol sequence: revised chronostratigraphy and long-term environmental trends. Quaternary Science Reviews 30, 11421154.CrossRefGoogle Scholar
Marković, S.B., Stevens, T., Kukla, G.J., Hambach, U., Fitzsimmons, K.E., Gibbard, P., Buggle, B., et al., 2015, Danube loess stratigraphy—towards a pan-European loess stratigraphic model. Earth-Science Reviews 148, 228258.CrossRefGoogle Scholar
Marković-Marjanović, J., 1950. Prethodna saopštenja o Deliblatskoj peščari. Zbornik Radova Geološkog Instituta SAN 1, 7590.Google Scholar
Marx, S.K., Kamber, B.S., McGowan, H.A., Petherick, L.M., McTainsh, G.H., Stromsoe, N., Hooper, J.N., May, J.H., 2018. Palaeo-dust records: a window to understanding past environments. Global and Planetary Change 165, 1343.CrossRefGoogle Scholar
Menković, L., 2013. Eolian relief of southeast Banatian. Glasnik Srpskog Geografskog Društva 93(4), 122.CrossRefGoogle Scholar
Mezősi, G., 2016. Physical geography of the great Hungarian plain. In: Mezősi, G., Kiss, T. (Contrib.), The Physical Geography of Hungary. Springer, Berlin, pp. 195229.Google Scholar
Mihailović, D., 2021. The Iron Gates Mesolithic in a regional context. Documenta Praehistorica 48, 5469.CrossRefGoogle Scholar
Milenković, M., Munćan, S., Babić, V., 2018. Dva veka pošumljavanja Deliblatske peščare: problem šumskih požara. Šumarstvo 3-4, 124.Google Scholar
Moine, O., Rousseau, D.D., Antoine, P., 2008. The impact of Dansgaard–Oeschger cycles on the loessic environment and malacofauna of Nussloch (Germany) during the upper Weichselian. Quaternary Research 70, 91104.CrossRefGoogle Scholar
Murray, A.S., Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.CrossRefGoogle Scholar
Murray, A.S., Wintle, A.G., 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37, 377381.CrossRefGoogle Scholar
Murray, A., Marten, R., Johnston, A., Martin, P., 1987. Analysis for naturally occurring radionuclides at environmental concentrations by gamma spectrometry. Journal of Radioanalytical and Nuclear Chemistry 115, 263288.CrossRefGoogle Scholar
Nowaczyk, B., 1986. The Age of Dunes, Their Textural and Structural Properties against Atmospheric Circulation Pattern of Poland during the Late Vistulian and Holocene. Adam Mickiewicz University Press, Seria Geografia 28, 245 pp.Google Scholar
Nyári, D., Kiss, T., Sipos, G., 2007. Investigation of Holocene blown-sand movement based on archaeological findings and OSL dating, Danube–Tisza Interfluve, Hungary. Journal of Maps 3 (supp. 1), 4657.CrossRefGoogle Scholar
Obreht, I., Zeeden, C., Schulte, P., Hambach, U., Eckmeier, E., Timar-Gabor, A., Lehmkuhl, F., 2015. Aeolian dynamics at the Orlovat loess–paleosol sequence, northern Serbia, based on detailed textural and geochemical evidence. Aeolian Research 18, 6981.CrossRefGoogle Scholar
Obreht, I., Zeeden, C., Hambach, U., Veres, D., Marković, S. B., Lehmkuhl, F., 2019. A critical reevaluation of palaeoclimate proxy records from loess in the Carpathian Basin. Earth-Science Reviews 190, 498520.CrossRefGoogle Scholar
Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 497500.CrossRefGoogle Scholar
Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B., Cvijanović, I., et al., 2014. A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106, 1428.CrossRefGoogle Scholar
Ruegg, G.H., 1983. Periglacial eolian evenly laminated sandy deposits in the late Pleistocene of NW Europe, a facies unrecorded in modern sedimentological handbooks. In: Brookfield, M.E., Ahlbrandt, T.S. (Eds.), Eolian Sediments and Processes. Developments in Sedimentology 38, 455482.CrossRefGoogle Scholar
Ruth, U., Wagenbach, D., Steffensen, J.P., Bigler, M., 2003. Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period. Journal of Geophysical Research: Atmospheres 108, D3, 4098. https://doi.org/10.1029/2002JD002376.CrossRefGoogle Scholar
Schaetzl, R.J., Bettis, E.A., III, Crouvi, O., Fitzsimmons, K.E., Grimley, D.A., Hambach, U., Lehmkuhl, F., et al., 2018. Approaches and challenges to the study of loess—introduction to the LoessFest Special Issue. Quaternary Research 89, 563618.CrossRefGoogle Scholar
Schwan, J., 1988. The structure and genesis of Weichselian to early hologene aeolian sand sheets in western Europe. Sedimentary Geology 55, 197232.CrossRefGoogle Scholar
Serban, R.D., Sipos, G., Popescu, M., Urdea, P., Onaca, A., Ladányi, Z., 2015. Comparative grain-size measurements for validating sampling and pretreatment techniques in terms of solifluction landforms, southern Carpathians, Romania. Journal of Environmental Geography 8, 3947.CrossRefGoogle Scholar
Shakun, J.D., Carlson, A.E., 2010. A global perspective on last glacial maximum to Holocene climate change. Quaternary Science Reviews 29, 18011816.CrossRefGoogle Scholar
Sipos, G., Marković, S., Tóth, O., Gavrilov, M., Balla, A., Kiss, T., Uradea, P., Meszaros, M., 2016. Assessing the morphological characteristics and formation time of the Deliblato Sands, Serbia. In: EGU General Assembly, Vienna, April, 2016. Geophysical Research Abstracts 10, 2016-13752. https://meetingorganizer.copernicus.org/EGU2016/EGU2016-13752.pdf.Google Scholar
Sipos, G., Marković, S.B., Gavrilov, M.B., Balla, A., Filyó, D., Bartyik, T., Mészáros, M., et al., 2022. Late Pleistocene and Holocene aeolian activity in the Deliblato Sands, Serbia. Quaternary Research 107, 113124.CrossRefGoogle Scholar
Sitzia, L., Bertran, P., Bahain, J.J., Bateman, M.D., Hernandez, M., Garon, H., de Lafontaine, G., et al., 2015. The Quaternary coversands of southwest France. Quaternary Science Reviews 124, 84105.CrossRefGoogle Scholar
Smalley, I.J., Leach, J.A., 1978. The origin and distribution of the loess in the Danube basin and associated regions of East-Central Europe—a review. Sedimentary Geology 21, 126.CrossRefGoogle Scholar
Smalley, I., O'Hara-Dhand, K., Wint, J., Machalett, B., Jary, Z., Jefferson, I., 2009. Rivers and loess: the significance of long river transportation in the complex event–sequence approach to loess deposit formation. Quaternary International 198, 718.CrossRefGoogle Scholar
Thompson, R., Oldfield, F., 1986. Environmental Magnetism. Allen & Unwin: Springer, London.CrossRefGoogle Scholar
Tošić, I., Gavrilov, M.B., Marković, S.B., Ruman, A., Putniković, S., 2018. Seasonal prevailing surface winds in northern Serbia. Theoretical and Applied Climatology 131, 12731284.CrossRefGoogle Scholar
Urdea, P., Ardelean, F., Ardelean, M., Onaca, A., 2023. The Romanian Carpathians: glacial landforms during deglaciation (18.9–14.6 ka). In: Palacios, D., Hughes, P.D., García-Ruiz, J.M., Andrés, N. (Eds.), European Glacial Landscapes: The Last Deglaciation. Elsevier, Amsterdam, pp. 165173.CrossRefGoogle Scholar
Újvári, G., Varga, A., Balogh-Brunstad, Z., 2008. Origin, weathering, and geochemical composition of loess in southwestern Hungary. Quaternary Research 69, 421437.CrossRefGoogle Scholar
van der Hammen, T., Wijmstra, T.A. (Eds.), 1971. The Upper Quaternary of the Dinkel valley. Mededelingen van de Rijks Geologische Dienst 22, 55213.Google Scholar
van Hateren, J.A., Kasse, C., van der Woude, J., Schokker, J., Prins, M.A., van Balen, R.T., 2022. Late Weichselian and Holocene climatic and local controls on aeolian deposition inferred from decomposing grain size-shape distributions. Quaternary Science Reviews 287, 107554. https://doi.org/10.1016/j.quascirev.2022.107554.CrossRefGoogle Scholar
Van Huissteden, J.K., Vandenberghe, J., van der Hammen, T., Laan, W., 2000. Fluvial and aeolian interaction under permafrost conditions: Weichselian late pleniglacial, Twente, eastern Netherlands. Catena 40, 307321.CrossRefGoogle Scholar
Vandenberghe, D., 2004. Investigation of the Optically Stimulated Luminescence Dating Method for Application to Young Geological Sediments. Doctoral dissertation, University of Ghent.Google Scholar
Vandenberghe, J., 1983. Late Weichselian river dune formation (Grote Nete valley, central Belgium). Zeitschrift für Geomorphologie Neue Folge, Supplement-Band 45, 251263.Google Scholar
Vandenberghe, J., 1985. Paleoenvironment and stratigraphy during the last glacial in the Belgian–Dutch border region. Quaternary Research 24, 2338.CrossRefGoogle Scholar
Vandenberghe, J., 1991. Changing conditions of aeolian sand deposition during the last deglaciation period. Zeitschrift für Geomorphologie, Supplement-Band 90, 193207.Google Scholar
Vandenberghe, J., Krook, L., 1981. Stratigraphy and genesis of the Pleistocene deposits at Alphen (southern Netherlands). Netherlands Journal of Geosciences = Geologie en Mijnbouw 60, 417426.Google Scholar
Vandenberghe, J., Krook, L., 1985. La stratigraphie et la genèse de dépôts Pleistocènes à Goirle (Pays-Bas). Quaternaire 22, 239247.Google Scholar
Vandenberghe, J., Wolfe, S., 2023. Periglacial eolian sand transport and deposition in Europe and North America. Reference Module in Earth Systems and Environmental Sciences, Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-323-99931-1.00021-0.Google Scholar
Varga, G., Kovács, J., Újvári, G., 2013. Late Pleistocene variations of the background aeolian dust concentration in the Carpathian Basin: an estimate using decomposition of grain-size distribution curves of loess deposits. Netherlands Journal of Geosciences 91, 159171.CrossRefGoogle Scholar
Zeeberg, J., 1998. The European sand belt in eastern Europe – and comparison of late glacial dune orientation with GCM simulation results. Boreas 27, 127139.CrossRefGoogle Scholar
Zeeden, C., Dietze, M., Kreutzer, S., 2018. Discriminating luminescence age uncertainty composition for a robust Bayesian modelling. Quaternary Geochronology 43, 3039.CrossRefGoogle Scholar
Zeremski, M., 1972. Južnobanatska lesna zaravan prilog regionalnoj geomorfologiji iz aspekta egzo i endodinamičkih procesa. Zbornik Matice Srpske za Prirodne Nauke 43, 580.Google Scholar
Zieliński, P., Sokołowski, R.J., Fedorowicz, S., Jankowski, M., 2011. Stratigraphic position of fluvial and aeolian deposits in the Żabinko site (W Poland) based on TL dating. Geochronometria 38, 6471.CrossRefGoogle Scholar
Supplementary material: File

Marković et al. supplementary material

Marković et al. supplementary material
Download Marković et al. supplementary material(File)
File 30.9 KB