Hostname: page-component-6d856f89d9-jhxnr Total loading time: 0 Render date: 2024-07-16T06:44:51.509Z Has data issue: false hasContentIssue false

Annual isotopic diet (δ13C) of Eremotherium laurillardi (Lund, 1842) and climate variation (δ18O) through the late Pleistocene in the Brazilian Intertropical Region

Published online by Cambridge University Press:  10 May 2023

Mário André Trindade Dantas*
Affiliation:
Laboratório de Ecologia e Geociências, Universidade Federal da Bahia (UFBA/IMS-CAT), Vitória da Conquista, Bahia, Brazil
Verônica Santos Gomes
Affiliation:
Laboratório de Ecologia e Geociências, Universidade Federal da Bahia (UFBA/IMS-CAT), Vitória da Conquista, Bahia, Brazil
Alexander Cherkinsky
Affiliation:
Center for Applied Isotope Studies, University of Georgia, Athens, Athens, Georgia 30602, USA
Hermínio Ismael de Araújo-Junior
Affiliation:
Departamento de Estratigrafia e Paleontologia, Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
*
Corresponding author: Mário André Trindade Dantas; Email: matdantas@yahoo.com.br

Abstract

We inferred the annual isotopic diet (δ13C) of an individual of the giant ground sloth Eremotherium laurillardi found in Toca dos Ossos (Ourolândia, Bahia, Brazil) through the extension of its third inferior molar. This individual lived in the region at 40,779–39,617cal yr BP. One year of its life was recorded in a length of 67 mm in the tooth. Two years were recorded in this molariform, during which the diet and climate did not change much, and substantial precipitation occurred during the middle of the year, which is in opposition to the modern pattern. The mean carbon (μδ13C = −13.9 ± 1.8‰) and oxygen (μδ18O = 22.5 ± 2.9‰) isotopic values were similar to values for other individuals of the species found in the same cave but different from the values found in other localities of the Brazilian Intertropical Region, which allows us to suggest that this region had more precipitation and lower temperatures in comparison to today. The oxygen isotopic values found in dated fossils of E. laurillardi and from two other taxa found in the same cave (Toxodon platensis, and Notiomastodon platensis) could help in the understanding of the climatic variation that occurred in the region.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asevedo, L., Ranzi, A., Kalliola, R., Pärssinen, M., Ruokolainen, K., Cozzuol, M.A., Rodrigues do Nascimento, E., et al., 2021. Isotopic paleoecology (δ13C, δ18O) of late Quaternary herbivorous mammal assemblages from southwestern Amazon. Quaternary Science Reviews 251, 106700.CrossRefGoogle Scholar
Auler, A.S., Piló, L.B., Smart, P.L., Wang, X., Hoffmann, D., Richards, D.A., R. Lawrence Edwards, R.L., Neves, W.A., Cheng, H., 2006. U-series dating and taphonomy of Quaternary vertebrates from Brazilian caves. Palaeogeography, Palaeoclimatology, Palaeoecology 240, 508522.CrossRefGoogle Scholar
Bocherens, H., Drucker, D.G., 2013. Carbonate stable isotopes: terrestrial teeth and bones. In: Elias, Scott A., S.A., Mock, C.J. (Eds.), Encyclopedia of Quaternary Science. 2nd ed. Elsevier, Amsterdam, pp. 304314.CrossRefGoogle Scholar
Cartelle, C., De Iuliis, G., 1995. Eremotherium laurillardi: the Panamerican late Pleistocene megatheriid sloth. Journal of Vertebrate Paleontology 15, 830841.CrossRefGoogle Scholar
Cartelle, C., De Iuliis, G., 2006. Eremotherium laurillardi (Lund) (Xenarthra, Megatheriidae), the Panamerican giant ground sloth: taxonomic aspects of the ontogeny of skull and dentition. Journal of Systematic Palaeontology 4, 199209.CrossRefGoogle Scholar
Cartelle, C., De Iuliis, G., Pujos, F., 2015. Eremotherium laurillardi (Lund, 1842) (Xenarthra, Megatheriinae) is the only valid megatheriine sloth species in the Pleistocene of intertropical Brazil: a response to Faure et al., 2014. Comptes Rendus Palevol 14, 1523.CrossRefGoogle Scholar
Cherkinsky, A., 2009. Can we get a good radiocarbon age from “bad bone”? Determining the reliability of radiocarbon age from bioapatite. Radiocarbon 51, 647655.CrossRefGoogle Scholar
Coplen, T.B., 1994. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances (Technical Report). Pure and Applied Chemistry 66, 273276.CrossRefGoogle Scholar
Cruz, F.W., Burns, S.J., Karmann, I., Sharp, W.D., Vuille, M., Cardoso, A.O., Ferrari, J.A., Silva Dias, P.L., Viana, O. Jr., 2005. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434, 6366.CrossRefGoogle ScholarPubMed
Dansgaard, W., 1964. Stable isotopes in precipitation. Tellus 16, 436468.CrossRefGoogle Scholar
Dantas, M.A., 2022. Estimating the body mass of the late Pleistocene megafauna from the South America Intertropical Region and a new regression to estimate the body mass of extinct xenarthrans. Journal of South American Earth Sciences 119, 103900.CrossRefGoogle Scholar
Dantas, M.A., Santos, A.M., 2022. Inferring the paleoecology of the Late Pleistocene giant ground sloths from the Brazilian Intertropical Region. Journal of South American Earth Sciences 117, 103899.CrossRefGoogle Scholar
Dantas, M.A.T., Cherkinsky, A., 2023. Interrelation of radiocarbon ages bone fractions in the Brazilian Intertropical Region. Quaternary Research (in press).CrossRefGoogle Scholar
Dantas, M.A.T., Cherkinsky, A., Bocherens, H., Drefahl, M., Bernardes, C., de Melo França, L., 2017. Isotopic paleoecology of the Pleistocene megamammals from the Brazilian Intertropical Region: feeding ecology (δ13C), niche breadth and overlap. Quaternary Science Reviews 170, 152163.CrossRefGoogle Scholar
Dantas, M.A.T., Silva, L.A., Pansani, T. R., Franca, L.M., Aragao, W.S., Santos, F. S., Fernandes, E.C., Waldherr, F., Ximenes, C.L. 2022. Paleobiogeography of meso-megamammals from South America and the Potential Historically Stable Intertropical Areas during the Late Quaternary. Paleontologia em Destaque 37, 111.Google Scholar
De Iuliis, G., Cartelle, C., 1999. A new giant megatheriine ground sloth (Mammalia: Xenarthra: Megatheriidae) from the late Blancan to early Irvingtonian of Florida. Zoological Journal of the Linnean Society 127, 495515.CrossRefGoogle Scholar
De Iuliis, G., St-André, P.A., 1997. Eremotherium sefvei nov. sp. (Mammalia, Xenarthra, Megatheriidae) from the Pleistocene of Ulloma, Bolivia. Geobios 30, 453461.CrossRefGoogle Scholar
Gomes, V.S., Lessa, C.M.B., Oliveira, G.R., Bantim, R.A.M., Sayão, J., Bocherens, H., Araújo, H.I. de Jr., Dantas, M.A.T., 2023. Seasonal variations in diet (δ13C) and climate (δ18O) inferred through toxodonts enamel teeth during the Late Pleistocene in the Brazilian Intertropical Region. Journal of South American Earth Sciences 121, 104148.CrossRefGoogle Scholar
Higgins, P., 2018. Isotope ecology from biominerals. In: Croft, D.A., Su, D.F., Simpson, S.W. (Eds.), Methods in Paleoecology: Reconstructing Cenozoic Terrestrial Environments and Ecological Communities. Springer, Cham, Switzerland (pp. 99120).CrossRefGoogle Scholar
Hogg, A.G., Heaton, T.J., Hua, Q., Palmer, J.G., Turney, C.S., Southon, J., Bayliss, A., et al., 2020. SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62, 759778.CrossRefGoogle Scholar
Larmon, J.T., Mcdonald, H.G., Ambrose, S., DeSantis, L.R., Lucero, L.J., 2019. A year in the life of a giant ground sloth during the Last Glacial Maximum in Belize. Science Advances 5, eaau1200.CrossRefGoogle ScholarPubMed
Levins, R. 1968. Evolution in Changing Environments. Princeton University Press, Princeton, NJ.CrossRefGoogle Scholar
Lopes, R.P., Dillenburg, S.R., Pereira, J.C., Sial, A.N., 2021. The paleoecology of Pleistocene giant megatheriid sloths: stable isotopes (δ13C, δ18O) of co-occurring Megatherium and Eremotherium from southern Brazil. Revista Brasileira de Paleontologia 24, 245264.CrossRefGoogle Scholar
MacFadden, B. J., 2005. Diet and habitat of toxodont megaherbivores (Mammalia, Notoungulata) from the late Quaternary of South and Central America. Quaternary Research 64, 113124.CrossRefGoogle Scholar
Marshall, J.D., Brooks, J.R., Lajtha, K., 2007. Sources of variation in the stable isotopic composition of plants. Stable Isotopes in Ecology and Environmental Science 2, 2260.CrossRefGoogle Scholar
Metcalfe, J.Z., Longstaffe, F.J., 2012. Mammoth tooth enamel growth rates inferred from stable isotope analysis and histology. Quaternary Research 77, 424432.CrossRefGoogle Scholar
Oliveira, J.F., Asevedo, L., Cherkinsky, A., Dantas, M.AT., 2020. Radiocarbon dating and integrative paleoecology (δ13C, stereomicrowear) of Eremotherium laurillardi (LUND, 1842) from midwest region of the Brazilian intertropical region. Journal of South American Earth Sciences 102, 102653.CrossRefGoogle Scholar
Omena, É.C., Silva, J.L.L. da, Sial, A.N., Cherkinsky, A., Dantas, M.A.T., 2021. Late Pleistocene meso-megaherbivores from Brazilian Intertropical Region: isotopic diet (δ13C), niche differentiation, guilds and paleoenvironmental reconstruction (δ13C, δ18O). Historical Biology 33, 22992304.CrossRefGoogle Scholar
Pansani, T.R., Muniz, F.P., Cherkinsky, A., Pacheco, M.L.A.F., Dantas, M.A.T., 2019. Isotopic paleoecology (δ13C, δ18O) of Late Quaternary megafauna from Mato Grosso do Sul and Bahia States, Brazil. Quaternary Science Reviews 221, 105864.CrossRefGoogle Scholar
Paula Couto, C., 1979. Tratado de paleomastozoologia. Academia Brasileira de Ciências, Rio de Janeiro.Google Scholar
Pérez-Crespo, V.A., Carbot-Chanona, G., Morales-Puente, P., Cienfuegos-Alvarado, E., Otero, F.J., 2015. Paleoambiente de la Depresión Central de Chiapas, con base en isótopos estables de carbono y oxígeno. Revista mexicana de ciencias geológicas 32, 273282.Google Scholar
Phillips, D.L., 2012. Converting isotope values to diet composition: the use of mixing models. Journal of Mammalogy 93, 342352.CrossRefGoogle Scholar
Pianka, E.R., 1973. The structure of lizard communities. Annual Review of Ecology and Systematics 4, 5374.CrossRefGoogle Scholar
Reimer, P.J., Austin, W.E., Bard, E., Bayliss, A., Blackwell, P.G., Ramsey, C.B., Butzin, B., et al. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725757.CrossRefGoogle Scholar
Sponheimer, M., Lee-Thorp, J.A., 2001. The oxygen isotope composition of mammalian enamel carbonate from Morea Estate, South Africa. Oecologia 126, 153157.CrossRefGoogle ScholarPubMed
Stríkis, N.M., Cruz, F.W., Barreto, E.A., Naughton, F., Vuille, M., Cheng, H., Voelker, A.H.L., et al. 2018. South American monsoon response to iceberg discharge in the North Atlantic. Proceedings of the National Academy of Sciences USA 115, 37883793.CrossRefGoogle ScholarPubMed
Tejada-Lara, J.V., Macfadden, B.J., Bermudez, L., Rojas, G., Salas-Gismondi, R., Flynn, J.J., 2018. Body mass predicts isotope enrichment in herbivorous mammals. Proceedings of the Royal Society of London B 285, 20181020.Google ScholarPubMed
Zazzo, A., 2014. Bone and enamel carbonate diagenesis: a radiocarbon prospective. Palaeogeography, Palaeoclimatology, Palaeoecology 416, 168178.CrossRefGoogle Scholar
Zazzo, A., Saliège, J.F., 2011. Radiocarbon dating of biological apatites: a review. Palaeogeography, Palaeoclimatology, Palaeoecology 310, 5261.CrossRefGoogle Scholar