Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-30T00:29:56.681Z Has data issue: false hasContentIssue false

Correlation of a Tephra Layer in Western Greece with a Late Pleistocene Eruption in the Campanian Province of Italy

Published online by Cambridge University Press:  20 January 2017

Karen St. Seymour
Affiliation:
Department of Geology, Concordia University, Montreal, Canada Department of Geology, University of Patras, Rion, Greece
Kimon Christanis
Affiliation:
Department of Geology, University of Patras, Rion, Greece

Abstract

The Kalodiki fen is a 2-km2 mire in a small basin within a tectonic depression in Epirus, western Greece. Since the last glaciation the basin has been occupied by a freshwater lake and has accumulated as much as 9 m of peat, which continues to form today. A 10-cm-thick, light-brown to olive fine sandy layer appears in cores at depths ranging from 2.9 to 5.7 m. The sand fraction of this layer consists mostly of pumice fragments and brown and colorless glass shards with similar major-element compositions, and it also contains crystal fragments of feldspars (mainly sanidine), ferromagnesian minerals, and probably sphene and apatite. The colorless glass has an index of refraction 1.519 ± 0.002. A sample of the overlying peat layer gave a minimum radiocarbon age of about 31,800 ± 1200 yr B.P. for the deposition of the tephra. The likely age of the tephra, its index of refraction, and its mineralogical and chemical characteristics display strong similarities to tephra from the Campanian province of Italy. Mineralogically similar tephra layers have also been reported from a peat deposit at Philippi, in northeastern Greece.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armienti, P. Barberi, F. Bizouard, H. Clocchiatti, R. Innocenti, F. Metrich, N. Rosi, M., and Sbrana, A. (1983). The Phlegrean Fields: Magma evolution within a shallow chamber. In “Explosive Volcanism” (Sheridan, M. F. and Barberi, F., Eds.), pp. 289311. Elsevier, Amsterdam.Google Scholar
Barberi, F. Innocenti, F. Lirer, L. Munno, R. Pescatore, T., and Santacroce, R. (1978). The Campanian Ignimbrite: A major prehistoric eruption in the Naples area (Italy). Bulletin Volcanologique 41-1, 131.Google Scholar
Botis, A. Bouzinos, A., and Christanis, K. (1993). The geology and paleoecology of the Kalodiki peatland, western Greece. International Peat Journal, 5, 2534.Google Scholar
Carmichael, I. S. E. Turner, F. J., and Verhoogen, J. (1974). “Igneous Petrology.” McGraw-Hill, New York.Google Scholar
Christanis, K. (1983a). Genese und Fazies der Torf-Lagerstatte von Philippi (Griechisch-Mazedonien) als Beispiel der Entstehung einer Braunkohlen-Lagerstatte vom stark telmatischen Typ. Published Ph.D. thesis, Univ. of Braunschweig.Google Scholar
Christanis, K. (1983b). Ein Torf erzahlt die Geschichte seines Moores. Telma 13, 1932.Google Scholar
Cornell, W. Carey, S., and Sigurdsson, H. (1983). Computer simulation of transport and deposition of the Campanian Y-5 Ash. In “Explosive Volcanism” (Sheridan, M. F. and Barberi, F., Eds), pp. 89109. Elsevier, Amsterdam.Google Scholar
Diessel, C. F. K. (1992). “Coal Bearing Depositional System.” Springer-Verlag, Heidelberg.Google Scholar
Einarsson, T. (1968). On the formation and history of Icelandic peat bogs. In “Proceedings of the 2nd International Peat Congress” (Robertson, R. A., Ed.), Vol. 1, pp. 213216. Leningrad.Google Scholar
Fisher, R. V., and Schmincke, H. U. (1984). “Pyroclastic Rocks.” Springer-Verlag, Berlin.Google Scholar
Fisher, R. V. Orsi, G., and Ort, M. (1993). Mobility of a large-volume pyroclastic flow-emplacement of the Campanian ignimbrite, Italy. Journal of Volcanology and Geothermal Research 56(3), 205.Google Scholar
Frechen, J. (1952). Die Herkunft der spatglazialen Bimstuffe in mittelund siiddeutschen Mooren. Geologisches Jahrbuch 67, 209230.Google Scholar
Heiken, G. (1972). Morphology and petrography of volcanic ashes. Geological Society of America Bulletin 83, 19611988.Google Scholar
Heiken, G. (1974). An atlas of volcanic ash. Smithsonian Contribution. Earth Science 12, 1101.Google Scholar
Heiken, G., and Wohletz, K. (1985). “Volcanic Ash.” Univ. of California Press, Berkeley.Google Scholar
Keller, J. (1981). Quaternary tephrochronology in the Mediterranean region. In “Tephra Studies” (Self, S. and Sparks, R. S. J., Eds.), pp. 95102. D. Reidel Publishing Company.Google Scholar
Keller, J. Ryan, W. B. F. Ninkovich, D., and Altherr, R. (1978). Explosive volcanic activity in the Mediterranean over the past 200,000 yrs as recorded in deep-sea sediments. Geological Society of America Bulletin 89, 591604.Google Scholar
McCoy, F. W. (1981). Areal distribution, redeposition and mixing of tephra within deep-sea sediments of the eastern Mediterranean Sea. In “Tephra Studies” (Self, S. and Sparks, R. S. J., Eds.), pp. 245254. Reidel, Dordrecht.Google Scholar
Raymond, R. Jr. Cohen, A. D., and Bish, D. L. (1985). Ash contents of Costa Rican peat deposits. In “Tropical Peat Resources: Prospects and Potential, Symposium and Proceedings,” pp. 170186. International Peat Society, Kingston, Jamaica.Google Scholar
Shaw, H. R. (1972). Viscosities of magmatic silicate liquids: An empirical method of prediction. American Journal of Science 272, 870893.Google Scholar
Stanley, D. J. Knight, R. J. Stuckenrath, R., and Catani, G. (1978). High sedimentation rates and variable dispersal patterns in the western Hellenic Trench. Nature (London) 273, 110113.Google Scholar
Thunell, R. Federman, A. Sparks, S., and Williams, D. (1979). The age, origin, and volcanological significance of the Y-5 Ash Layer in the Mediterranean. Quaternary Research 12, 241253.Google Scholar
Vinci, A. (1985). Distribution and chemical composition of tephra layers from Eastern Mediterranean abyssal sediments. Marine Geology 64, 143155.Google Scholar
Vitaliano, C. J. Taylor, S. R. Farrand, W. R., and Jacobson, T. W. (1981). Tephra layer in Franchthi cave, Peloponnesos, Greece. In“Tephra Studies” (Self, S. and Sparks, R. S. J., Eds.), pp. 373379. Reidel, Dordrecht.Google Scholar
Williams, H., and McBimey, A. R. (1979). “Volcanology.” Freeman, Cooper & Company, San Francisco.Google Scholar
Wohletz, K. (1983). Mechanisms of hydrovolcanic pyroclast formation: Grain size, scanning electron microscopy, and experimental studies. Journal of Volcanology and Geothermal Research 17, 3163.CrossRefGoogle Scholar
Yoshioka, K. (1963). Ecological studies of the Takadayachi Moor in the Hakkoda Mountains. 1. General aspects of the environment and vegetation. Ecological Review 16, 1326.Google Scholar