Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T10:36:58.691Z Has data issue: false hasContentIssue false

Decadal-scale autumn temperature reconstruction back to AD 1580 inferred from the varved sediments of Lake Silvaplana (Southeastern Swiss Alps)

Published online by Cambridge University Press:  20 January 2017

Alex Blass*
Affiliation:
Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland NCCR Climate, 3012 Berne, Switzerland Department of Physical Geography, University of Berne, 3012 Berne, Switzerland
Christian Bigler
Affiliation:
NCCR Climate, 3012 Berne, Switzerland Department of Ecology and Environmental Science, Umeå University, 901 87 Umeå, Sweden
Martin Grosjean
Affiliation:
NCCR Climate, 3012 Berne, Switzerland Department of Physical Geography, University of Berne, 3012 Berne, Switzerland
Michael Sturm
Affiliation:
Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
*
*Corresponding author. Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.E-mail address:alex.blass@eawag.ch (A. Blass).

Abstract

A quantitative high-resolution autumn (September–November) temperature reconstruction for the southeastern Swiss Alps back to AD 1580 is presented here. We used the annually resolved biogenic silica (diatoms) flux derived from the accurately dated and annually sampled sediments of Lake Silvaplana (46°27′N, 9°48′E, 1800 m a.s.l.). The biogenic silica flux smoothed by means of a 9-yr running mean was calibrated (r=0.70, p<0.01) against local instrumental temperature data (AD 1864–1949). The resulting reconstruction (± 2 standard errors=±0.7 °C) indicates that autumns during the late Little Ice Age were generally cooler than they were during the 20th century. During the cold anomaly around AD 1600 and during the Maunder Minimum, however, the reconstructed autumn temperatures did not experience strong negative departures from the 20th-century mean. The warmest autumns prior to 1900 occurred around AD 1770 and 1820 (0.75 °C above the 20th-century mean). Our data agree closely with two other autumn temperature reconstructions for the Alps and for Europe that are based on documentary evidence and are completely unrelated to our data, revealing a very consistent picture over the centuries.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, N.T. (2000). Diatoms, temperature and climatic change. European Journal of Phycology 35, 307314.Google Scholar
Anderson, N.J., Renberg, I., and Segerström, U. (1995). Diatom production responses to the development of early agriculture in a boreal forest lake-catchment (Kassjon Northern Sweden). Journal of Ecology 83, 809822.CrossRefGoogle Scholar
Battarbee, R.W. (1986). Diatom analysis.Berglund, B.E. Handbook of Holocene Palaeoecology and Palaeohydrology John Wiley and Sons Ltd, Chichester.527570.Google Scholar
Battarbee, R.W., and Kneen, M.J. (1982). The use of electronically counted microspheres in absolute diatom analysis. Limnology and Oceanography 27, 184188.Google Scholar
Battarbee, R.W., Jones, V., Flower, R.J., Cameron, N., and Bennion, H. (2001). Diatoms.Smol, J., Birks, H.J.B., Last, W. Tracking environmental change using lake sediments. Terrestrial, algal, and siliceous indicators Kluwer Academic Publishers, Dordrecht.155202.Google Scholar
Bergier, J.-F. (1983). Wirtschaftsgeschichte der Schweiz. Benzinger Verlag, Zürich.Google Scholar
Berner, R.A. (1971). Principles of chemical sedimentology. McGraw-Hill Book Company, New York.Google Scholar
Bigler, C., and Hall, R.I. (2003). Diatoms as quantitative indicators of July temperature: a validation attempt at century-scale with meteorological data from northern Sweden. Palaeogeography Palaeoclimatology Palaeoecology 189, 147160.CrossRefGoogle Scholar
Bigler, C., Heiri, O., Krskova, R., Lotter, A.F., and Sturm, M. (2006). Distribution of diatoms, chironomids and cladocera in surface sediments of thirty mountain lakes in southeastern Switzerland. Aquatic Sciences 68, 154171.Google Scholar
Bigler, C., von Gunten, L., Lotter, A. F., Hausmann, S., Blass, A., Sturm, M., Ohlendorf, C. in press. Quantifying human-induced eutrophication in Swiss mountain lakes since AD 1800 using diatoms. The Holocene..Google Scholar
Blass, A., Grosjean, M., Troxler, A., and Sturm, M. (2007). How stable are 20th century calibration models? A high-resolution summer temperature reconstruction for the eastern Swiss Alps back to A.D. 1580 derived from proglacial varved sediments. The Holocene 17, 5163.CrossRefGoogle Scholar
Bosli-Pavoni, M. (1971). Ergebnisse der limnologischen Untersuchungen der Oberengadiner Seen. Schweizerische Zeitschrift für Hydrologie 33, 386409.Google Scholar
Brunetti, M., Maugeri, M., Nanni, T., Auer, I., Böhm, R., and Schöner, W. (2006). Precipitation variability and changes in the greater Alpine region over the 1800–2003 period. Journal of Geophysical Research 111, (D11): Art. No. D11107 (Jun 7 2006).CrossRefGoogle Scholar
Casty, C., Wanner, H., Luterbacher, J., Esper, J., and Boehm, R. (2005). Temperature and precipitation variability in the European Alps since AD 1500. International Journal of Climatology 25, 18551880.Google Scholar
Demaster, D.J. (1981). The supply and accumulation of silica in the marine environment. Geochimica et Cosmochimica Acta 45, 17151732.Google Scholar
Gemeinde Sils, .(1994). Jahresbericht 1993/1994 Kur- und Verkehrsverein Sils, Engadin..Google Scholar
Gensler, G..(1978). Das Klima von Graubünden. Ein Beitrag zur Regionalklimatologie der Schweiz. Habilitation thesis,. University of Zurich, .Google Scholar
Hall, R.I., Leavitt, P.R., Smol, J.P., and Zirnhelt, N. (1997). Comparison of diatoms, fossil pigments and historical records as measures of lake eutrophication. Freshwater Biology 38, 401417.Google Scholar
Heiri, O., and Lotter, A.F. (2005). Holocene and Lateglacial summer temperature reconstruction in the Swiss Alps based on fossil assemblages of aquatic organisms: a review. Boreas 34, 506516.Google Scholar
Hughen, K., Overpeck, J., and Anderson, R. (2000). Recent warming in a 500-year paleotemperature record from varved sediments, Upper Soper Lake, Baffin Island, Canada. The Holocene 10, 919.CrossRefGoogle Scholar
Koinig, K.A., Schmidt, R., Sommaruga-Wögrath, S., Tessadri, R., and Psenner, R. (1998). Climate change as the primary cause for pH shifts in a high alpine lake. Water Air And Soil Pollution 104, 167180.Google Scholar
Kulbe, T., and Niederreiter, R. (2003). Freeze coring of soft surface sediments at a water depth of several hundred meters. Journal of Paleolimnology 29, 257263.CrossRefGoogle Scholar
Köster, D., and Pienitz, R. ("ster and Pienitz, 2006). )Seasonal diatom variability and paleolimnological inferences—A case study. Journal of Paleolimnology 35, 395416.CrossRefGoogle Scholar
Leemann, A., and Niessen, F. (1994). Holocene glacial activity and climatic variations in the Swiss Alps: reconstructing a continuous record from proglacial lake sediments. The Holocene 4, 259268.CrossRefGoogle Scholar
Leonard, E.M. (1997). The relationship between glacial activity and sediment production: evidence from a 4450-sedimentation in Hector Lake, Alberta, Canada. Journal of Paleolimnology 17, 319330.Google Scholar
LIMNEX, .(1994). Gewässerzustand und Gewässerschutzmassnahmen im Oberengadin. Bericht zuhanden des Amtes für Umweltschutz, Kanton Graubünden..75 pp.Google Scholar
Lotter, A.F. (2001). The palaeolimnology of Soppensee (Central Switzerland), as evidenced by diatom, pollen, and fossil-pigment analyses. Journal of Paleolimnology 25, 6579.CrossRefGoogle Scholar
Lotter, A.F., Pienitz, R., and Schmidt, R. (1999). Diatoms as indicators of environmental change near Arctic alpine treeline.Stoermer, E.F., Smol, J.P. The Diatoms: Application for the Environmental and Earth Sciences Cambridge Univ. Press, Cambridge.482.Google Scholar
Luterbacher, J., Xoplaki, E., Dietrich, D., Jones, P.D., Davies, T.D., Portis, D., Gonzalez-Rouco, F., von Storch, H., Gyalistras, D., Casty, C., and Wanner, H. (2002). Extending the North Atlantic Oscillation reconstruction back to 1500. Atmospheric Science Letters 2, 114124.CrossRefGoogle Scholar
Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., and Wanner, H. (2004). European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303, 14991503.Google Scholar
Moore, J.J., Hughen, K.A., Miller, G.H., and Overpeck, J.T. (2001). Little Ice Age recorded in summer temperature reconstruction from varved sediments of Donard Lake, Baffin Island, Canada. Journal of Paleolimnology 25, 503517.CrossRefGoogle Scholar
Mortlock, R., and Froelich, P. (1989). A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Research 36, 14151426.Google Scholar
Niessen, F., Wick, L., Bonani, G., Chondrogianni, C., and Siegenthaler, C. (1992). Aquatic system response to climatic and human changes—Productivity, bottom water oxygen status, and sapropel formation in Lake Lugano over the last 10'000 years. Aquatic Sciences 54, 257276.CrossRefGoogle Scholar
Ohlendorf, C., Sturm, M.in press.A modified method for biogenic silica determination.. Journal of Paleolimnology.Google Scholar
Ohlendorf, C., Niessen, F., and Weissert, H. (1997). Glacial varve thickness and 127 years of instrumental climate data: a comparison. Climatic Change 36, 391411.Google Scholar
Paillard, D. (1996). Macintosh program performs time-series analysis. EOS 77, 4.CrossRefGoogle Scholar
Raubitschek, S., Lücke, A., and Schleser, G.H. (1999). Sedimentation patterns of diatoms in Lake Holzmaar, Germany—On the transfer of climate signals to biogenic silica oxygen isotope proxies. Journal of Paleolimnology 21, 437448.Google Scholar
Reich, A. (2002). Silvaplana-Chronik einer Gemeinde in Graubünden. Reich/Gemeinde Silvaplana Samedan(375 pp.).Google Scholar
Reynolds, C.S. (1973). The seasonal periodicity of planktonic diatoms in a shallow eutrophic lake. Freshwater Biology 3, 89110.CrossRefGoogle Scholar
Reynolds, C.S. (1984). The ecology of freshwater phytoplankton. Cambridge Univ. Press, Cambridge.Google Scholar
Röthlisberger, G. ("thlisberger, 1991). )Chronik der Unwetterschäden in der Schweiz. WSL, Birmensdorf.121.Google Scholar
Röthlisberger, G. ("thlisberger, 1993). )Unwetterschäden in der Schweiz im Jahre 1992. Wasser, Energie, Luf 85, 5965.Google Scholar
Schwarz-Zanetti, G., and Schwarz-Zanetti, W. (1988). Vom Klima in Graubünden. Bündner Jahrbuch 30, 3742.Google Scholar
(2002). SMA..Jahresbericht der Meteo Schweiz. Annalen der Meteo Schweiz..Google Scholar
Sturm, M., and Lotter, A.F. (1995). Lake sediments as environmental archives. EAWAG News 38E, 69.Google Scholar
Sturm, M., and Matter, A. (1978). Turbidites and varves in Lake Brienz (Switzerland): deposition of clastic detritus by density currents.Matter, A., Tucker, M. Modern and ancient lake sediments Blackwell Scientific Publications, Bern.147168.CrossRefGoogle Scholar
Weckström, J., Korhola, A., Erästö, P., and Holmström, L. ("m 2006). )Temperature patterns over the past eight centuries in Northern Fennoscandia inferred from sedimentary diatoms. Quaternary Research 66, 7886.Google Scholar
Wessels, M., Mohaupt, K., Kummerlin, R., and Lenhard, A. (1999). Reconstructing past eutrophication trends from diatoms and biogenic silica in the sediment and the pelagic zone of Lake Constance, Germany. Journal of Paleolimnology 21, 171192.Google Scholar
Weyhenmeyer, G.A. (2001). Warmer winters: are planktonic algal populations in Sweden's largest lakes affected?. Ambio 30, 565571.Google Scholar
Wick, L., Lemcke, G., and Sturm, M. (2003). Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia: high-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. The Holocene 13, 665675.CrossRefGoogle Scholar
Xoplaki, E., Luterbacher, J., Paeth, H., Dietrich, D., Steiner, N., Grosjean, M., and Wanner, H. (2005). European spring and autumn temperature variability and change of extremes over the last half millennium. Geophysical Research 32(L15713).Google Scholar
Zolitschka, B., Brauer, A., Negendank, J.F.W., Stockhausen, H., and Lang, A. (2000). Annually dated late Weichselian continental paleoclimate record from the Eifel, Germany. Geology 28, 783786.2.0.CO;2>CrossRefGoogle Scholar
Zuan, H. (1984). Sils im Engadin. Einst und jetzt. Gemeindeportrait. Buchdruckerei St. Moritz AG, St. Moritz.Google Scholar