Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-14T10:43:16.100Z Has data issue: false hasContentIssue false

Lichenometric dating using Rhizocarpon subgenus Rhizocarpon in the Patagonian Andes, Argentina

Published online by Cambridge University Press:  20 January 2017

Abstract

This study represents the first attempt to develop and apply lichenometric dating curves of Rhizocarpon subgenus Rhizocarpon for dating glacier fluctuations in the Patagonian Andes. Six glaciers were studied along the Patagonian Andes. Surfaces of known ages (historical evidences and tree-ring analyses) were used as control sites to develop indirect lichenometric dating curves. Dating curves developed for the studied glaciers show the same general logarithmic form, indicating that growth rate of subgenus Rhizocarpon decreases over time. The strong west–east precipitation gradient across the Andean Cordillera introduces statistically significant differences in the growth curves, with faster growth rates in the moist west sites than the drier eastern sites. Latitudinal difference among the studied glaciers does not appear to be a major factor regulating lichen growth rates. Therefore, we developed two lichenometric curves for dating glacier fluctuations in wetter and drier sites in the Patagonian Andes during the past 450 yrs. Application of the developed curves to moraine dating allowed us to complement glacial chronologies previously obtained by tree-ring analyses. A first chronosequence for moraine formation in the Torrecillas Glacier (42°S) is presented. Our findings confirm the utility of lichenometry to date deglaciated surfaces in the Patagonian Andes.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aniya, M. Holocene glacial chronology in Patagonia: Tyndall and Upsala Glaciers. Arctic, Antarctic and Alpine Research 27, (1995). 311322.CrossRefGoogle Scholar
Barros, V., Cordon, V., Moyano, C., Mendez, R., Forquera, J., and Pizzio, O. Cartas de Precipitación de la Zona Oeste de las Provincias de Río Negro y Neuquén. Facultad de Ciencias Agrarias. (1983). Universidad Nacional del Comahue, Cinco Saltos, Argentina.Google Scholar
Benedict, J.B. Arapaho Pass: Glacial Geology and Archeology at the Crest of the Colorado Front Range. Research Report No. 3, Center for Mountain Archaeology. (1985). University of Colorado, Ward, Colorado.Google Scholar
Benedict, J.B. Techniques in lichenometry: identifying the yellow Rhizocarpons. Arctic and Alpine Research 20, (1988). 285291.CrossRefGoogle Scholar
Benedict, J.B. Experiments on lichen growth, III. The shape of the age–size curve. Arctic, Antarctic, and Alpine Research 40, (2008). 1526.CrossRefGoogle Scholar
Boelcke, O., Roig, F.A., and Moore, D.M. Transecta Botánica de la Patagonia Austral. (1985). Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires.Google Scholar
Bradwell, T. A new lichenometric dating curve for Southeast Iceland. Geografiska Annaler 83, (2001). 91101.CrossRefGoogle Scholar
Bradwell, T., and Armstrong, R.A. Growth rates of Rhizocarpon geographicum lichens: a review with new data from Iceland. Journal of Quaternary Science 22, (2007). 311320.CrossRefGoogle Scholar
Bull, W.B., and Brandon, M.T. Lichen dating earthquake-generated regional rockfall events, Southern Alps, New Zealand. Geological Society of America Bulletin 110, (1998). 6084.2.3.CO;2>CrossRefGoogle Scholar
Cabrera, A.L. Fitogeografía de la República Argentina. Boletín de la Sociedad Argentina de Botánica 14, (1971). 142.Google Scholar
De Agostini, A.M. Andes Patagónicos. (1945). Guillermo Kraft Ltda., Buenos Aires. 437 Google Scholar
Escobar, F., Vidal, F., and Garin, C. Water balance in the Patagonia Icefield. Bulletin of Glacier Research 4, (1992). 109120.Google Scholar
Evans, D.J.A., Archer, S., and Wilson, D.J.H. A comparison of the lichenometric and Schmidt hammer dating techniques based on data from the proglacial areas of some Icelandic glaciers. Quaternary Science Reviews 18, (1999). 1341.CrossRefGoogle Scholar
Gallopín, G.C. Estudio ecológico integrado de la cuenca superior del Río Manso Superior (Río Negro, Argentina). I. Descripción general de la cuenca. Anales de Parques Nacionales 14, (1978). 161230.Google Scholar
Garreaud, R.D., Vuille, M., Compagnucci, R., and Marengo, J. Present-day South American climate. Paleogeography, Palaeoclimatology, Palaeoecology (2008). http://dx.doi.org/10.1016/j.palaeo.2007.10.032 Google Scholar
Glasser, N.F., Harrison, S., Winchester, V., and Aniya, M. Late Pleistocene and Holocene palaeoclimate and glacier fluctuations in Patagonia. Global and Planetary Changes 43, (2004). 79101.CrossRefGoogle Scholar
Hodgson, D.M., (1978). Lichenometric studies of three glaciers in the Yukon Territory of Canada. BSc Thesis, University of Edinburgh, Edinburgh, Canada.Google Scholar
Innes, J.L. Size frequency distributions as a lichenometric technique: an assessment. Arctic and Alpine Research 15, (1983). 285294.CrossRefGoogle Scholar
Innes, J.L. Size frequency distributions as a lichenometric technique: an assessment. Arctic and Alpine Research 15, (1983). 285294.CrossRefGoogle Scholar
Innes, J.L. Lichenometry. Progress in Physical Geography 9, (1985). 187254.CrossRefGoogle Scholar
Innes, J.L. Influence of sampling design on lichen size–frequency distributions and its effects on derived lichenometric indices. Arctic and Alpine Research 18, (1986). 201208.CrossRefGoogle Scholar
John, E.A. Note on the sizes of largest thalli of three species of Rhizocarpon (subgenus Rhizocarpon) at a rockslide in the Canadian Rocky Mountains. Arctic and Alpine Research 21, (1989). 185187.CrossRefGoogle Scholar
Jomelli, V., Grancher, D., Naveau, P., Cooley, D., and Brunstein, D. Assessment study of lichenometric methods for dating surfaces. Geomorphology 86, (2007). 131143.CrossRefGoogle Scholar
Jomelli, V., Grancher, D., Brunstein, D., and Solomina, O. Recalibration of the yellow Rhizocarpon growth curve in the Cordillera Blanca (Perú) and implications for LIA chronology. Geomorphology 93, (2008). 201212.CrossRefGoogle Scholar
Klüte, F., (1926). Argentinien-Chile von heute. Land, volk und kultur. Uhlenhorst, Verlag Curt Brenner, oJ., Hamburg.Google Scholar
Koutche, V., and Ladvocat, H.J. Parque Nacional Los Alerces: Proyecto de reserva para la creación de un Parque Nacional en el Territorio Nacional del Chubut. (1937). Dirección de Parques Nacionales, Buenos Aires, Argentina.Google Scholar
Larocque, S.J., and Smith, D.J. Calibrated Rhizocarpon spp. growth curve for the Mount Waddington area, British Columbia coast mountains, Canada. Arctic, Antarctic, and Alpine Research 36, (2004). 407418.CrossRefGoogle Scholar
Lawrence, D.B., and Lawrence, E.G. Recent Glacier Variations in Southern South America. Research Report No. 1. (1959). American Geographical Society, New York.Google Scholar
Loso, M.G., and Doak, D.F. The biology behind lichenometric dating curves. Oecologia 147, (2005). 223229.CrossRefGoogle ScholarPubMed
Lowell, T.V., Schoenenberger, K.R., Deddens, J.A., Denton, G.H., Smith, C., Black, J., and Hendy, C.H. Rhizocarpon calibration curve for the Aoraki/Mount Cook area of New Zealand. Journal of Quaternary Science 20, (2005). 313325.CrossRefGoogle Scholar
Luckman, B.H. Lichenometric dating of Holocene moraines at Mount Edith Cavell, Jasper, Alberta. Canadian Journal of Earth Science 14, (1977). 18091822.CrossRefGoogle Scholar
Luckman, B.H., and Villalba, R. Assessing the synchroneity of glacier fluctuations in the western Cordillera of the Americas during the last millennium. Makgraf, V. Interhemispheric Climate Linkages. (2001). Academic Press, San Diego. 119140.Google Scholar
Lliboutry, L. More about advancing and retreating glaciers in Patagonia. Journal of Glaciology 2, (1953). 255261.CrossRefGoogle Scholar
Masiokas, M., (2008). Climate and glacier variability during past centuries in the north and south Patagonian Andes of Argentina. PhD Thesis, The University of Western Ontario, London, Ontario, Canada.Google Scholar
Masiokas, M., Villalba, R., Luckman, B.H., Delgado, S., Lascano, M.E., and Stepanek, P. 20th-century glacier recession and regional hydroclimatic changes in northwestern Patagonia. Global and Planetary Changes 60, (2008). 85100.CrossRefGoogle Scholar
Masiokas, M., Luckman, B.H., Villalba, R., Delgado, S., Skvarca, P., Ripalta, A., in press. Little Ice Age fluctuations of small glaciers in the Monte Fitz Roy and Lago del Desierto areas, south Patagonian Andes, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology. doi:10.1016/j.palaeo.2007.10.031.CrossRefGoogle Scholar
Matthews, J.A. “Little Ice Age” glacier variations in Jotunheimen, southern Norway: a study in regionally controlled lichenometric dating of recessional moraines with implications for climate and lichen growth rates. The Holocene 15, (2005). 119.CrossRefGoogle Scholar
McCarroll, D. A new approach to lichenometry: dating single-age and diachronous surfaces. The Holocene 4, (1994). 383396.CrossRefGoogle Scholar
McKinzey, K.M., Orwin, J.F., and Bradwell, T. Re-dating the moraines at Skálafellsjokull and Heinabergsjokull using different lichenometric methods: implications for the timing of the Icelandic Little Ice Age maximum. Geografiska Annaler 86, (2004). 319335.CrossRefGoogle Scholar
Mercer, J. Glacier variations in southern Patagonia. Geographical Review 55, (1965). 390413.CrossRefGoogle Scholar
Miller, A. The Climate of Chile. Schwerdtfeger, W. World Survey of Climatology, Climates of Central and South America. (1976). Elsevier, Amsterdam, The Netherlands. 113131.Google Scholar
Muñoz, E., and Garay, A. Caracterización climática de la Provincia de Río Negro, Instituto Nacional de Tecnología Agropecuaria. (1985). San Carlos de Bariloche, Argentina.Google Scholar
O'Neal, M.A., and Schoenenberger, K.R. A Rhizocarpon geographicum growth curve for the Cascade Range of Washington and northern Oregon, USA. Quaternary Research 60, (2003). 233241.CrossRefGoogle Scholar
Prohaska, F. The Climate of Argentina, Paraguay and Uruguay. Schwerdtfeger, W. World Survey of Climatology, Climates of Central and South America. (1976). Elsevier, Amsterdam, The Netherlands. 13112.Google Scholar
Rabassa, J., and Clapperton, C. Quaternary glaciations of the Southern Andes. Quaternary Science Review 9, (1990). 153174.CrossRefGoogle Scholar
Rabassa, J., Rubulis, S., and Suarez, J. Los glaciares del Monte Tronador, Parque Nacional Nahuel Huapi, Río Negro, Argentina. Anales de Parques Nacionales 14, (1978). 259295.Google Scholar
Rabassa, J., Brandani, A.A., Boninsegna, J.A., and Cobos, D. Cronología de la “Pequeña Edad del Hielo” en los glaciares Río Manso y Castaño Overo, Cerro Tronador, Provincia de Río Negro, Proceeding Noveno Congreso Geológico Argentino. (1984). Asociación Geológica Argentina, S.C. de Bariloche, Argentina. 624639.Google Scholar
Solomina, O., and Calkin, P.E. Lichenometry as applied to moraines in Alaska, U.S.A., and Kamchatka, Russia. Arctic, Antarctic, and Alpine Research 35, (2003). 129143.CrossRefGoogle Scholar
Solomina, O., Jomelli, V., Kaser, G., Ames, A., Berger, B., and Pouyaud, B. Lichenometry in the Cordillera Blanca, Perú: “Little Ice Age” moraine chronology. Global and Planetary Changes (2007). http://dx.doi.org/10.1016/j.gloplacha.2006.11.016 CrossRefGoogle Scholar
Veblen, T.T., Hill, R.S., and Read, J. The ecology and biogeography of Nothofagus forests. (1996). Yale University Press, New Haven.Google Scholar
Villalba, R., Leiva, J.C., Rubulis, S., Suarez, J., and Lenzano, L. Climate, tree-ring, and glacial fluctuations in the Río Frías Valley, Río Negro, Argentina. Arctic, Antarctic, and Alpine Research 22, (1990). 215232.CrossRefGoogle Scholar
Villalba, R., Lara, A., Boninsegna, J.A., Masiokas, M., Delgado, S., Aravena, J.C., Roig, F.A., Schmelter, A., Wolodarsky, A., and Ripalta, A. Large-scale temperature changes across the southern Andes: 20th-century variations in the context of the past 400 years. Climatic Change 59, (2003). 177232.CrossRefGoogle Scholar
Wardle, P., Ezcurra, C., Ramírez, C., and Wagstaff, S. Comparison of the flora and vegetation of the southern Andes and New Zealand. New Zealand Journal of Botany 39, (2001). 69108.CrossRefGoogle Scholar
Winchester, V., and Harrison, S. A development of the lichenometric method applied to the dating of glacially influenced debris flows in Southern Chile. Earth Surface Processes and Landforms 19, (1994). 137151.CrossRefGoogle Scholar
Winchester, V., and Harrison, S. Dendrochronology and lichenometry: colonization, growth rates and dating of geomorphological events on the east side of the North Patagonian Icefield, Chile. Geomorphology 34, (2000). 181194.CrossRefGoogle Scholar
Winchester, V., Harrison, S., and Warren, C.R. Recent retreat Glaciar Nef, Chilean Patagonia, dated by lichenometry and dendrochronology. Arctic, Antarctic, and Alpine Research 33, (2001). 266273.CrossRefGoogle Scholar