Hostname: page-component-6d856f89d9-8l2sj Total loading time: 0 Render date: 2024-07-16T07:32:34.259Z Has data issue: false hasContentIssue false

New insights from XRF core scanning data into boreal lake ontogeny during the Eemian (Marine Isotope Stage 5e) at Sokli, northeast Finland

Published online by Cambridge University Press:  11 October 2017

Malin E. Kylander*
Affiliation:
Department of Geological Sciences, Stockholm University, SE-10691 Stockholm, Sweden The Bolin Centre for Climate Research, Stockholm University, SE-10691 Stockholm, Sweden
Anna Plikk
Affiliation:
The Bolin Centre for Climate Research, Stockholm University, SE-10691 Stockholm, Sweden Department of Physical Geography, Stockholm University, SE-10691 Stockholm, Sweden
Johan Rydberg
Affiliation:
Department of Ecology and Environmental Sciences, Umeå University, SE-901 87 Umeå, Sweden
Ludvig Löwemark
Affiliation:
Department of Geosciences, National Taiwan University, 106 17, Taipei, Taiwan
J. Sakari Salonen
Affiliation:
Department of Geosciences and Geography, FI-00014University of Helsinki, Finland
María Fernández-Fernández
Affiliation:
Instituto de Investigaciones Agrobiológicas de Galicia, CSIC, Apartado 122, E-15780 Santiago de Compostela, Spain
Karin Helmens
Affiliation:
The Bolin Centre for Climate Research, Stockholm University, SE-10691 Stockholm, Sweden Department of Physical Geography, Stockholm University, SE-10691 Stockholm, Sweden
*
*Corresponding author at: Department of Geological Sciences, Stockholm University, SE-10691 Stockholm, Sweden. E-mail address: malin.kylander@geo.su.se (M.E. Kylander).

Abstract

Biological proxies from the Sokli Eemian (Marine Isotope Stage 5e) paleolake sequence from northeast Finland have previously shown that, unlike many postglacial records from boreal sites, the lake becomes increasingly eutrophic over time. Here, principal components (PC) were extracted from a high resolution multi-element XRF core scanning dataset to describe minerogenic input from the wider catchment (PC1), the input of S, Fe, Mn, and Ca-rich detrital material from the surrounding Sokli Carbonatite Massif (PC2), and chemical weathering (PC3). Minerogenic inputs to the lake were elevated early in the record and during two abrupt cooling events when soils and vegetation in the catchment were poor. Chemical weathering in the catchment generally increased over time, coinciding with higher air temperatures, catchment productivity, and the presence of acidic conifer species. Abiotic edaphic processes play a key role in lake ontogeny at this site stemming from the base cation- and nutrient-rich bedrock, which supports lake alkalinity and productivity. The climate history at this site, and its integrated effects on the lake system, appear to override development processes and alters its long-term trajectory.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexanderson, H., Eskola, K.O., Helmens, K.F., 2008. Optical dating of a late Quaternary sediment sequence from Sokli, northern Finland. Geochronometria 32, 5159.Google Scholar
Bauch, H.A., Kandiano, E.S., Helmke, J., Andersen, N., Rosell-Mele, A., Erlenkeuser, H., 2011. Climatic bisection of the last interglacial warm period in the Polar North Atlantic. Quaternary Science Reviews 30, 18131818.Google Scholar
Bińka, K., Nitychoruk, J., Dzierżek, J., 2011. Climate stability during the Eemian – new pollen evidence from the Nidzica site, northern Poland. Boreas 40, 342350.Google Scholar
Björck, S., Noe-Nygaard, N., Wolin, J., Houmark-Nielsen, M., Jørgen Hansen, H., Snowball, I., 2000. Eemian Lake development, hydrology and climate: a multi-stratigraphic study of the Hollerup site in Denmark. Quaternary Science Reviews 19, 509536.CrossRefGoogle Scholar
Boyle, J.F., 2007. Loss of apatite caused irreversible early-Holocene lake acidification. The Holocene 17, 543547.Google Scholar
Bradbury, J.P., Dieterich-Rurup, K.V., 1993. Holocene diatom paleolimnology of Elk Lake, Minnesota. In: Bradbury, J.P., Dean, W.E. (Eds.), Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-central United States. (Geological Society of America Special Paper 276. Geological Society of America, Boulder, Colorado, pp. 215237.Google Scholar
Bradbury, J.P., Winter, T.C., 1976. Areal Distribution and Stratigraphy of Diatoms in the Sediments of Lake Sallie, Minnesota. Ecology 57, 10051014.Google Scholar
Bradshaw, R.H.W., 1981. Modern pollen-representation factors for woods in south-east England. Journal of Ecology 69, 4570.Google Scholar
Brown, E.T., Johnson, T.C., Scholz, C.A., Cohen, A.S., King, J.W., 2007. Abrupt change in tropical African climate linked to the bipolar seesaw over the past 55,000 years. Geophysical Research Letters, 34. http://dx.doi.org/10.1029/2007GL031240.Google Scholar
Chawchai, S., Kylander, M.E., Chabangborn, A., 2016. Testing commonly used X‐ray fluorescence core scanning‐based proxies for organic‐rich lake sediments and peat. Boreas 45, 180189.Google Scholar
Cheddadi, R., Mamakowa, K., Guiot, J., de Beaulieu, J.-L., Reille, M., Andrieu, V., Granoszewski, W., Peyron, O., 1998. Was the climate of the Eemian stable? A quantitative climate reconstruction from seven European pollen records. Palaeogeography, Palaeoclimatology, Palaeoecology 143, 7385.Google Scholar
Cohen, A.S., 2003. Paleolimnology: The History and Evolution of Lake Systems. Oxford University Press, Oxford.Google Scholar
Cortijo, E., Duplessy, J.C., Labeyrie, L., Leclaire, H., Duprat, J., Van Wearing, T., 1994. Eemian cooling in the Norwegian Sea and North Atlantic ocean preceding continental ice-sheet growth. Nature 372, 446449.CrossRefGoogle Scholar
Davison, W, 1993. Iron and Manganese in Lakes. Earth-Science Reviews 34, 119163.Google Scholar
Deer, W.A., Howie, R.A., Zussman, J., 1992. An introduction to the rock-forming minerals. Longman Scientific and Technical, Harlow, UK.Google Scholar
Donner, J., 1995. The Quaternary History of Scandinavia. Cambridge University Press, Cambridge.Google Scholar
Drebs, A., Nordlund, A., Karlsson, P., Helminen, J., Rissanen, P., 2002. Climatological statistics of Finland 1971–2000. Finish Meterological Institute, Helsinki.Google Scholar
Engstrom, D.R., Fritz, S.C., 2006. Coupling between primary terrestrial succession and the trophic development of lakes at Glacier Bay, Alaska. Journal of Paleolimnology 35, 873880.Google Scholar
Engstrom, D.R., Fritz, S.C., Almendinger, J.E., Juggins, S., 2000. Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature 408, 161166.Google Scholar
Eriksson, L., Johansson, E., Kettaneh-Wodl, N., Wold, S., 1999. Introduction to Multi- and Mega-Variate Data Anlysis using Projection Methods (PCA and PLS). Umetrics AB, Umeå.Google Scholar
Ford, M.S.J., 1990. A 10,000-year history of natural ecosystem acidification. Ecological Monographs 60, 5789.CrossRefGoogle Scholar
Fritz, S.C., Anderson, N.J., 2013. The relative influences of climate and catchment processes on Holocene lake development in glaciated regions. Journal of Paleolimnology 49, 349362.Google Scholar
Fritz, S.C., Engstrom, D.R., Juggins, S., 2004. Patterns of early lake evolution in boreal landscapes: a comparison of stratigraphic inferences with a modern chronosequence in Glacier Bay, Alaska. The Holocene 14, 828840.Google Scholar
Fronval, T., Jansen, E., 1996. Rapid changes in ocean circulation and heat flux in the Nordic seas during the Last Interglacial period. Nature 383, 745844.Google Scholar
Galaasen, E.V., Ninnemann, U.S., Irval, N., Kleiven, H.F., Rosenthal, Y., Kissel, C., Hodell, D.A., 2014. Rapid Reductions in North Atlantic Deep Water During the Peak of the Last Interglacial Period. Science 343, 11291132.Google Scholar
Haworth, E.Y., 1976. Two late-glacial (late Devensian) diatom assemblage profiles from northern Scotland. New Phytologist 77, 227256.Google Scholar
Helmens, K.F., Bos, J.A.A., Engels, S., Van Meerbeeck, C.J., Bohncke, S.J.P., Renssen, H., Heiri, O., et al. 2007. Present-day temperatures in northern Scandinavia during the last glaciation. Geology 35, 987990.Google Scholar
Helmens, K.F., Räsänen, M.E., Johansson, P.W., 2000. The last interglacial-glacial cycle in NE Fennoscandia: a nearly continuous record from Sokli (Finnish Lapland). Quaternary Science Reviews 19, 16051623.CrossRefGoogle Scholar
Helmens, K.F., Salonen, J.S., Plikk, A., Engels, S., Väliranta, M., Kylander, M., Brendryen, J., Renssen, H., 2015. Major cooling intersecting peak Eemian Interglacial warmth in northern Europe. Quaternary Science Reviews 122, 293299.Google Scholar
Holmer, M., Storkholm, P., 2001. Sulphate reduction and sulphur cycling in lake sediments: a review. Freshwater Biology 46, 431451.Google Scholar
Ilvonen, E., 1973. Eem - kerrostuma savukosken soklilla. Julkaisija: Suomen Geologinen Seura 25, 8184.Google Scholar
Irvalı, N., Ninnemann, U.S., Galaasen, E.V., Rosenthal, Y., Kroon, D., Oppo, D.W., Kleiven, H.F., Darling, K.F., Kissel, C., 2012. Rapid switches in subpolar North Atlantic hydrography and climate during the Last Interglacial (MIS 5e). Paleoceanography 27, PA2207. http:/dx.doi.org/10.1029/2011PA002244.CrossRefGoogle Scholar
Jones, V., Birks, H., 2004. Lake-sediment records of recent environmental change on Svalbard: results of diatom analysis. Journal of Paleolimnology 31, 445466.Google Scholar
Korhola, A, Weckström, J, 2004. Paleolimnological studies in Arctic Fennoscandinavia and the Kola Peninsula (Russia). In: Pienitz, R, Douglas, M.S.V., Smol, J. (Eds), Developments in Paleoenvironmental Research. Springer Academic, Dordrecht, pp. 381418.Google Scholar
Kühl, N., Litt, T., Schölzel, C., Hense, A., 2007. Eemian and Early Weichselian temperature and precipitation variability in northern Germany. Quaternary Science Reviews 26, 33113317.Google Scholar
Kylander, M.E., Ampel, L., Wohlfarth, B., 2011. High‐resolution X‐ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: new insights from chemical proxies. Journal of Quaternary Science 26, 109117.Google Scholar
Kylander, M.E., Klaminder, J., Wohlfarth, B., Löwemark, L., 2013. Geochemical responses to paleoclimatic changes in southern Sweden since the late glacial: the Hässeldala Port lake sediment record. Journal of Paleolimnology 50, 5770.Google Scholar
Law, A.C., Anderson, N.J., McGowan, S., 2015. Spatial and temporal variability of lake ontogeny in south-western Greenland. Quaternary Science Reviews 126, 116.Google Scholar
Lee, M.J., Lee, J.I., Garcia, D., Moutte, J., Williams, C.T., Wall, F., Kim, Y., 2006. Pyrochlore chemistry from the Sokli phoscorite-carbonatite complex, Finland: Implications for the genesis of phoscorite and carbonatite association. Geochemical Journal 40, 113.Google Scholar
Ljung, K., Holmgren, S., Kylander, M., Sjolte, J., Van der Putten, N., Kageyama, M., Porter, C.T., Björck, S., 2015. The last termination in the central South Atlantic. Quaternary Science Reviews 123, 193214.Google Scholar
Lotter, A.F., Bigler, C., 2000. Do diatoms in the Swiss Alps reflect the length of ice-cover? Aquatic Sciences 62, 125141.Google Scholar
Mavris, C., Egli, M., Plötze, M., Blum, J.D., Mirabella, A., Giaccai, D., Haeberli, W., 2010. Initial stages of weathering and soil formation in the Morteratsch proglacial area (Upper Engadine, Switzerland). Geoderma 155, 359371.Google Scholar
Minyuk, P.S., Borkhodoev, V.Y., Wennrich, V., 2014. Inorganic geochemistry data from Lake El’gygytgyn sediments: marine isotope stages 6–11. Climate of the Past 10, 467485.Google Scholar
Oliva, P., Viers, J., Dupré, B., 2003. Chemical weathering in granitic environments. Chemical Geology 202, 225256.CrossRefGoogle Scholar
Pienitz, R., Smol, J.P., MacDonald, G.M., 1999. Paleolimnological Reconstruction of Holocene Climatic Trends from Two Boreal Treeline Lakes, Northwest Territories, Canada. Arctic, Antarctic, and Alpine Research 31, 8293.Google Scholar
Plikk, A., Helmens, K.F., Fernandez-Fernandez, M., Kylander, M.E., Löwemark, L., Risberg, J., Salonen, J.S., Väliranta, M., Weckström, J., 2016. Development of an Eemian (MIS 5e) Interglacial palaeolake at Sokli (N Finland) inferred using multiple proxies. Palaeogeography, Palaeoclimatology, Palaeoecology 463, 1126.Google Scholar
Reimann, C., Filzmoser, P., Garret, R., Dutter, R., 2008. Statistical Data Analysis Explained: Applied Environmental Statistics. John Wiley and Sons, Chichester, UK.Google Scholar
Renberg, I., 1981. Formation, structure and visual appearance of iron-rich, varved lake sediments. Proceedings - International Association of Theoretical and Applied Limnology 21, 94101.Google Scholar
Riebe, C.S., Kirchner, J.W., Finkel, R.C., 2004. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth and Planetary Science Letters 224, 547562.Google Scholar
Rioual, P., Andrieu-Ponel, V., de Beaulieu, J.L., Reille, M., Svobodova, H., Battarbee, R.W., 2007. Diatom responses to limnological and climatic changes at Ribains Maar (French Massif Central) during the Eemian and Early Würm. Quaternary Science Reviews 26, 15571609.Google Scholar
Rosén, P., Vogel, H., Cunningham, L., Reuss, N., Conley, D., Persson, P., 2010. Fourier transform infrared spectroscopy, a new method for rapid determination of total organic and inorganic carbon and biogenic silica concentration in lake sediments. Journal of Paleolimnology 43, 247259.Google Scholar
Seidenkrantz, M.S., Kristensen, P., Knudsen, K.L., 1995. Marine evidence for climatic instability during the last interglacial in shelf records from northwest Europe. Journal of Quaternary Science 10, 7782.Google Scholar
Stoermer, E., 1993. Evaluating diatom succession: some pecularities of the Great Lakes case. Journal of Paleolimnology 8, 7183.Google Scholar
Talvitie, J., Lehmuspelto, P., Vuotovesi, T., 1981. Airborne Thermal Surveying of the Ground in Sokli, Finland. Geological Survey of Finland, Espoo.Google Scholar
Tanaka, K., Akagawa, F., Yamamoto, K., Tani, Y., Kawabe, I., Kawai, T., 2007. Rare earth element geochemistry of Lake Baikal sediment: its implication for geochemical response to climate change during the Last Glacial/Interglacial transition. Quaternary Science Reviews 26, 13621368.Google Scholar
Tinsley, H., Smith, R.T., 1974. Surface pollen studies across a woodland/heath transition and their application to the interpretation of pollen diagrams. New Phytologist 73, 547565.Google Scholar
Väliranta, M., 2006. Terrestrial plant macrofossil records; possible indicators of past lake-level fluctuations in north-eastern European Russia and Finnish Lapland. Acta Palaeobotanica 46, 235243.Google Scholar
Van Dam, H., Mertens, A., Sinkeldam, J., 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28, 117133.Google Scholar
Van Nevel, L., Mertens, J., De Schrijver, A., Baeten, L., De Neve, S., Tack, F.M., Meers, E., Verheyen, K., 2013. Forest floor leachate fluxes under six different tree species on a metal contaminated site. Science of the Total Environment 447, 99107.Google Scholar
Vartiainen, H., 1980. The Petrography, mineralogy and petrochemistry of the Sokli carbonatite massif, northern Finland. Geological Survey of Finland.Google Scholar
West, A., Galy, A., Bickle, M., 2005. Tectonic and climatic controls on silicate weathering. Earth and Planetary Science Letters 235, 211228.Google Scholar
Wetzel, R.G., 2001. Limnology. Academic Press.Google Scholar
White, A.F., Blum, A.E., 1995. Effects of climate on chemical weathering in watersheds. Geochimica et Cosmochimica Acta 59, 17291747.Google Scholar
Whitehead, D.R., Charles, D.F., Jackson, S.T., Smol, J.P., Engstrom, D.R., 1989. The developmental history of Adirondack (NY) lakes. Journal of Paleolimnology 2, 185206.Google Scholar
Wolin, J., 1996. Late Holocene lake-level and lake development signals in Lower Herring Lake, Michigan. Journal of Paleolimnology 15, 1945.Google Scholar
Zeng, Y., Chen, J., Xiao, J., Qi, L., 2013. Non-residual Sr of the sediments in Daihai Lake as a good indicator of chemical weathering. Quaternary Research 79, 284291.Google Scholar
Supplementary material: Image

Kylander et al supplementary material

Kylander et al supplementary material 1

Download Kylander et al supplementary material(Image)
Image 35.3 MB