Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T09:16:05.322Z Has data issue: false hasContentIssue false

Paleo-Critical Zones, windows into the changing life and landscapes during the Quaternary Period

Published online by Cambridge University Press:  15 June 2020

Gail M. Ashley*
Affiliation:
Department of Earth and Planetary Sciences, Rutgers University, Piscataway, 08854, NJ, USA
*
*Corresponding author e-mail address: gmashley@eps.rutgers.edu

Abstract

The Critical Zone (CZ) as visualized in 1998 was a way to integrate the research of the four scientific spheres (lithosphere, hydrosphere, biosphere and atmosphere) at the surface of Earth and to study the linkages, feedbacks and record of processes. Rather than closeting studies by a variety of disciplines into their respective pigeonholes the CZ perspective provides the symbiotic framework from which the tendrils of improved understanding can radiate outward to new disciplines and/or feedback into the component disciplines. During the last 2 decades, CZ research has been limited to the modern environment. Knowledge gained from the modern and the focus on interpreting ancient records allows for the development of paleo-CZs (PCZs). PCZs provide a powerful tool for improved understanding of the landscapes during the Quaternary Period and the response of this thin skin to glaciations, sea level fluctuations and evolving life. Case studies from hominins in East Africa and Homo sapiens in the Americas provide examples of the rich records stored in PCZs. As we move into the space age, the CZ can provide a platform from which to guide future exploration of the proto Critical Zones on the rocky planets and asteroids of our solar system.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akob, D.M., Küsel, K., 2011. Where microorganisms meet rocks in the Earth's Critical Zone. Biogeosciences, 35313543.CrossRefGoogle Scholar
Alekseeva, T., Kabanov, P., Alekseev, A., Kalinin, P., Alekseeva, V., 2016. Characteristics of Early Earth's Critical Zone based on Middle-Late Devonian paleosol properties (Voronezh High, Russia). Clays and Clay Minerals 64, 677694.CrossRefGoogle Scholar
Alexandrovskiy, A.L., Glasko, M.P., Krenke, N.A., Chichagova, O.A., 2004. Buried soils of floodplains and paleoenvironmental changes in the Holocene. Revista Mexicana de Ciencias Geológicas 21, 917.Google Scholar
Amundson, R., Richter, D.D., Humphreys, G.S., Jobbagy, E.G., Gaillardert, J., 2007. Coupling between biota and Earth materials in the Critical Zone. Elements 3, 327332.CrossRefGoogle Scholar
Anderson, S.P., von Blanckenburg, F., White, A.F., 2007. Physical and chemical controls on the Critical Zone. Elements 3, 315320.CrossRefGoogle Scholar
Arráiz, H., Barboni, D., Ashley, G.M., Mabulla, A.Z.P., Baquedano, E., Domínguez-Rodrigo, M., 2017. The FLK Zinj paleolandscape: Reconstruction of a 1.84 Ma wooded habitat in the FLK Zinj-AMK-PTK-DS archaeological complex, Middle Bed I (Olduvai Gorge, Tanzania). Palaeogeography, Palaeoclimatology, Palaeoecology 488, 920.CrossRefGoogle Scholar
Ashley, G.M., 1998. Where are we headed? ‘Soft’ rock research into the new millenium GSA, Program with Abstracts GSA, Toronto, Ont, p. Abstract# 50167.Google Scholar
Ashley, G.M., Barboni, D., Domínguez-Rodrigo, M., Bunn, H.T., Mabulla, A.Z.P., Diez-Martin, F., Barba, R., Baquedano, E., 2010. A spring and wooded habitat at FLK Zinj and their relevance to origins of human behavior. Quaternary Research 74, 304314.CrossRefGoogle Scholar
Ashley, G.M., Delaney, J.S., 2017. ‘Critical Zones” on Mars and across the Solar System, Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, TX, p. 1179.Google Scholar
Ashley, GM, De Wet, CB, Karis, AM, O'reilly, TM, Baluyot, RD, 2014. Freshwater limestone in an arid rift basin: a Goldilocks effect. Journal of Sedimentary Research 84, 9881004.CrossRefGoogle Scholar
Balco, G., Rovey, C.W., 2008. An isochron method for cosmogenic-nuclide dating of buried soils and sediments. American Journal of Science 308, 10831114.CrossRefGoogle Scholar
Barnosky, A.D., 2005. Effects of Quaternary climatic change on speciation in mammals. Journal of Mammalian Evolution 12, 247264.CrossRefGoogle Scholar
Barnosky, A.D., Koch, P.L., Feranec, R.S., Wing, S.L., Shabel, A.B., 2004. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 7075.CrossRefGoogle ScholarPubMed
Birkeland, P.W., 1999. Soils and Geomorphology, 3rd ed.Oxford Universtiy Press, New York.Google Scholar
Boston, P.J., 2015. Hypothetical inverted Critical Zones for subsurface biospheres on desert planets and icy ocean worlds., 2nd International Planetary Caves Conference. LPI Contributions, Flagstaff, AZ, p. 9039.Google Scholar
Boston, P.J., Ivanov, M.V., McKay, C.P., 1992. On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. Icarus 95, 300308.CrossRefGoogle ScholarPubMed
Brantley, S.L., Goldhaver, M.B., Ragnarsdottir, K.V., 2007. Crossing disciplines and scales to understand the Critical Zone. Elements 3, 307314.CrossRefGoogle Scholar
Brantley, S.L., Lebedeva, M., 2011. Learning to read the chemistry of regolith to understand the Critical Zone. Annual Review of Earth and Planetary Sciences 39, 387416.CrossRefGoogle Scholar
Brantley, S.L., Megonigal, J.P., Scatena, F.N., Balogh-Brunstad, Z., Barnes, R.T., Bruns, M.A., Van Cappellen, P., 2011. Twelve testable hypotheses on the geobiology of weathering. Geobiology 9, 140165.Google ScholarPubMed
Brunet, M., Guy, F., Pilbean, D., others, a., 2002. A new hominid from the Upper Miocene of Chad, Central Africa. Nature 418, 145151.CrossRefGoogle ScholarPubMed
Bunn, H.T., Gurtov, A.N., 2014. Prey mortality profiles indicate that Early Pleistocene Homo at Olduvai was an ambush predator. Quaternary International 322–323, 4453.CrossRefGoogle Scholar
Bunn, H.T., Kroll, E.M., 1986. Systematic butchery by Plio-Pleistocene hominids at Olduvai Gorge, Tanzania. Current Anthropology 27, 431452.CrossRefGoogle Scholar
Chorover, J., Kretzschmar, R., Garcia-Pichel, F., Sparks, D.L., 2007. Soil biogeochemical processes within the Critical Zone. Elements 3, 321326.CrossRefGoogle Scholar
Cronin, T.M., 2010. Paleoclimates: understanding climate change past and present. Columbia University Press, New York.Google Scholar
Davis, L.G., Madsen, D.B., Becerra-Valdiva, L., Higham, T., Sisson, D.A., Skinner, S.A., Stueber, D., and 10 others, 2019. Late Upper Paleolithic occupation at Cooper's Ferry, Idaho, USA, ~16,000 years ago. Science 365, 891897.CrossRefGoogle ScholarPubMed
Deino, A.L., 2012. 40Ar/39Ar dating of Bed I. Olduvai Gorge, Tanzania, and the chronology of early Pleistocene climate change. Journal of Human Evolution 63, 251273.CrossRefGoogle Scholar
DeMenocal, P., 2011. Climate and human evolution. Science 331, 540542.CrossRefGoogle ScholarPubMed
Denton, G.H., Anderson, R.F., Toggweiler, J.R., Edwards, R.L., Schaefer, J.M., Putnam, A.E., 2010. The last glacial termination. Science 328, 16521656.CrossRefGoogle ScholarPubMed
Derry, L.A., Chadwick, O.A., 2007. Contributions from Earth's atmosphere to soil. Elements 5, 333338.CrossRefGoogle Scholar
Dillehay, T.D., Ocampo, C., Saavedra, J., Sawakuchi, A.O., Vega, R.M., Pino, M., Collins, M.B., and 7 others. 2015. New archaelogical evidence for an early human presence at Monte Verde, Chile. PLos ONE 10.Google Scholar
Domínguez-Rodrigo, M., Bunn, H.T., Mabulla, A.Z.P., Ashley, G.M., Diez-Martín, F., Barboni, D., Prendergast, M.E., Yravedra, J., Barba, R., Sanchez, A., Baquedano, E., Pickering, T.R., 2010. New excavations at FLK Zinjanthropus site and their relevance to origins of human behavior. Quaternary Research 74, 315332.CrossRefGoogle Scholar
Driese, S.G., Ashley, G.M., 2016. Paleoenvironmental reconstruction of a paleosol catena, the Zinj archeological level, Olduvai Gorge, Tanzania. Quaternary Research 85, 133146.CrossRefGoogle Scholar
European Space Agency, 2019. Rosetta's target: comet 67P/Churyumov-Gerasimenko.Google Scholar
Fan, Y., 2015. Groundwater in the Earth's critical zone: Relevance to large-scale patterns and processes. Water Resources Research 51, 30513069.CrossRefGoogle Scholar
Faure, H., Walter, R.C., Grant, D.R., 2002. The coastal oasis: ice age springs on emerged continental shelves. Global and Planetary Change 33, 4756.CrossRefGoogle Scholar
Ferraro, J.V., Hoggarth, J.A., Zori, D., Binetti, K.M., Stinchcomb, G.E., 2018. Integrating human activities, archeaology, and the Paleo-Critical Zone paradigm. Frontiers in Earth Science 6.CrossRefGoogle Scholar
Fleagle, J.G., Shea, J.J., Grine, F.E., Baden, A.L., Leakey, R.E., 2010. Out of Africa I: The First Hominin Colonization of Eurasia, Vertebrate Paleobiology and Paleoanthropology. Springer Netherlands, p. 294.CrossRefGoogle Scholar
Frostick, L.E., 1997. The East African rift basins, in: Selley, R.C. (Ed.), African Basins: Sedimentary Basins of the World. Elsevier Science, Amsterdam, pp. 187209.CrossRefGoogle Scholar
Gawthorpe, R.L., Leeder, M.R., 2000. Tectono-sedimentary evolution of active extensional basins. Basin Research 12, 195218.CrossRefGoogle Scholar
Gilbert, M.T.P., Jenkins, D.L., Gotherstrom, A., Naveran, N., Sanchez, J.J., Hofreiter, M., Thomsen, P.F., and 6 others.2008. DNA from pre-Clovis human coprolites in Oregon, North America. Science 320, 786789CrossRefGoogle Scholar
Goebel, T., Waters, M.R., O'Rourke, D.H., 2008. The Late Pleistocene dispersal of modern humans in the Americas. Science 319, 14971502.CrossRefGoogle ScholarPubMed
Grine, F.E., 1988. Evolutionary history of the “robust” Australopithecines : a summary and historical perspective, in: Grine, F.E. (Ed.), Evolutionary History of the “Robust” Australopithecines. Aldine de Gruyter, New York, pp. 509520.Google Scholar
Grotzinger, J.P., Hayes, A.G., Lamb, M.P., McLennan, S.M., 2013. Sedimentary processes on Earth, Mars, Titan, and Venus, in: Mackwell, S.J., Simon-Miller, A.A., Harder, J.W., Bullock, M.A. (Eds.), Comparative Climatology of Terrestrial Planets. Univ. of Arizona Press, Tucson, pp. 439472.Google Scholar
Gugliotta, G., 2008. The Great Human Migration, Smithsonian Magazine, p. 6.Google Scholar
Imbrie, J., Imbrie, K.P., 1986. Ice Ages: Solving the Mystery. Harvard University Press., Cambridge.Google Scholar
Jenkins, D.L., Davis, L.G., Stafford, T.W.J., Campos, P.F., H, B.., Jones, G.T., Cummings, L.S., and 13 others, 2012. Clovis age Western Stemmed projectile points and human coprolites at the Paisley Caves. Science 337, 223228.CrossRefGoogle ScholarPubMed
Karafet, T.M., Zegura, S.L., Hammer, M.F., 2006. Y chromosomes, in: Ubelaker, D.H. (Ed.), Environment, Origins, and Population. Smithsonian Institution Press, Washington, DC, pp. 831839.Google Scholar
Kargel, J.S., 2004. Mars: A warmer, wetter planet. Springer Science & Business Media, Berlin.Google Scholar
Kieniewicz, J.M., Smith, J.R., 2009. Paleoenvironmental reconstruction and water balance of a mid-Pleistocene pluvial lake, Dakhleh Oasis, Egypt. Geological Society of America Bulletin 121, 11541171.CrossRefGoogle Scholar
Kullmer, O., 2015. Geological Background of Early Hominid Sites in Africa. Springer, Berlin.CrossRefGoogle Scholar
Leakey, L.S.B., 1959. A new fossil skull from Olduvai. Nature 184, 491493.CrossRefGoogle Scholar
Leakey, M.D., 1971. Olduvai Gorge: excavations in Beds I and II; 1960–1963. Cambridge University Press, Cambridge, UK.Google Scholar
Li, H., Li, C., Ran, S., Feng, J., Zuo, W., 2015. Applications of surface penetrating radar for Mars Exploration, American Geophysical Union. AGU, San Francisco, pp. P51C-2077.Google Scholar
Lin, H., 2010. Earth's critical zone and hydropedology: concepts, characteristics and advances. Hydrological Earth System Science 14, 2545.CrossRefGoogle Scholar
Lin, H., Bouma, J., Pachepsky, Y., Western, A., Thompson, J., van Genuchten, R., Vogel, H.J., 2006. Hydropedology: Synergistic integration of pedology and hydrology. Water Resources Research 42, W05301.CrossRefGoogle Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography 20, 217.Google Scholar
Lowe, J.J., Walker, M.J.C., 2015. Reconstruction Quaternary Environments, 3rd Edition. Routledge, London.Google Scholar
Lukens, W.E., Lehmann, T., Peppe, D.J., Fox, D.L., Driese, S.G., McNulty, K.P., 2017. The Early Miocene Critical Zone at Karungu, Western Kenya: An equatorial, open habitat with few primate remains. Frontiers in Earth Science 5.CrossRefGoogle Scholar
Magill, C.R., Ashley, G.M., Domínguez-Rodrigo, M., Freeman, K.H., 2016. Dietary options and behavior suggested by plant biomarker evidence in an early human habitat. Proceedings of the National Academy of Sciences 113, 28742879.CrossRefGoogle Scholar
Mandel, R.D., 2008. Buried paleoindian-age landscapes in stream valleys of the central plains, USA. Geomorphology 101 342361.CrossRefGoogle Scholar
Mandel, R.D., Jacob, J.S., Nordt, L.C., 2007. Geoarchaeology of the Richard Beene Site, in: Thoms, A.V., Mandel, R.D. (Eds.), Archaeological and Paleoecological Investigations at the Richard Beene Site (41BX831), South Central Texas. Texas A&M University, College Station, Texas., pp. 2760.Google Scholar
Mandel, R.D., Thoms, A.V., Nordt, L.C., Jacob, J.S., 2018. Geoarchaeology and paleoecology of the deeply stratified Richard Beene site, Medina River valley, South-Central Texas, USA. Quaternary International 463, 176197.CrossRefGoogle Scholar
Meltzer, D.J., 2009. First Peoples in a New World. University of California Press, Berkeley.CrossRefGoogle Scholar
Merriwether, D.A., 2006. Mitochondrial DNA, in: Ubelaker, D.H. (Ed.), Environment, Origins, and Population. Smithsonian Institution Press, Washington, DC, pp. 817830.Google Scholar
Molnar, P., Anderson, R.S., Anderson, S.P., 2007. Tectonics, fracturing of rock, and erosion. Journal of Geophysical Research: Earth Surface 112(F3014), 112.CrossRefGoogle Scholar
Morbidelli, A., Lunine, J.I., O'Brien, D.P., Raymond, S.N., Walsh, K.J., 2012. Building terrestrial planets. Annual Review of Earth and Planetary Sciences 40, 251275.CrossRefGoogle Scholar
Nordt, L.C., Boutton, T.W., Jacob, J.S., Mandel, R.D., 2002. C4 plant productivity and climate-CO2 variations in south-central Texas during the late Quaternary. Quaternary Research 58, 182188.CrossRefGoogle Scholar
Nordt, L.C., Driese, S.G., 2013. Application of the Critical Zone concept to the deep-time sedimentary record. The Sedimentary Record 11, 49.CrossRefGoogle Scholar
Nordt, L.C., Hallmark, C.T., Driese, S.G., Dworkin, S.I., Atchley, S.C., 2012. Biogeochemical characterization of a lithified paleosol: Implications for the interpretation of ancient Critical Zones. Geochimica et Cosmochimica Acta 87, 267282.CrossRefGoogle Scholar
NRC, 2001. Basic research opportunities in Earth science. National Research Council, Washington, DC, p. 154.Google Scholar
NRC, 2010. Understanding climate's influence on human evolution. National Research Council, Washington, DC, p. 115.Google Scholar
Potts, R., 1996. Evolution and climate variability. Science 273, 922923.CrossRefGoogle Scholar
Retallack, G.J., 2001. Soils of the Past: An introduction to paleopedology, 2nd ed.Blackwell Science, Oxford.CrossRefGoogle Scholar
Retallack, G.J., 2014. Paleosols and paleoenvironments of early Mars. Geology 42, 755758.CrossRefGoogle Scholar
Riebe, C.S., Jesse Hahm, W.J., Brantley, S.L., 2017. Controls on deep critical zone architecture: a historical review and four testable hypotheses. Earth Surface Processes and Landforms 42, 128156.CrossRefGoogle Scholar
Ruddiman, W.F., 2000. Earth's Climate, Past and Future. W.H. Freeman and Co., New York.Google Scholar
Ruddiman, W.F., 2005. Plows, plagues, and petroleum: how humans took control of climate. Princeton University Press, Princeton, NJ.Google Scholar
Shultz, S., Maslin, M., 2013. Early human speciation, brain expansion and dispersal influenced by African climate pulses. PLoS ONE 8.CrossRefGoogle ScholarPubMed
Stinchcomb, G.E., Beverly, E.J., 2019. Editorial: The role of the Paleo-Critical Zone in shaping Quaternary hominin evolution. Frontiers in Earth Science 7.CrossRefGoogle Scholar
Stuart, A.J., 1991. Mammalian extinctions in the Late Pleistocene of northern Eurasia and North America. Biological Review 66, 453562.CrossRefGoogle ScholarPubMed
Thoms, A.V., Clabaugh, P.A., 2011. The Archaic period at the Richard Beene site: six thousand years of hunter-gatherer family cookery in south-central North America. Bulletin of the Texas Archaeological Society 82, 77115.Google Scholar
Toner, J.D., Catling, D.C., Light, B., 2014. Soluble salts at the Phoenix Lander site, Mars: A reanalysis of the wet chemistry laboratory data. Geochimica et Cosmochimica Acta 136, 142168.CrossRefGoogle Scholar
TRANSITIONS, 2012. The changing Earth-life system: critical Information for society from the deep past, NSF-SGP sponsored Workshop Report, Washington, DC, p. 63.Google Scholar
Vaniman, D.T., Reedy, R., Heiken, G.H., Olhoeft, G., Mendel, W., Heiken, G.H., French, B.M., 1991. The lunar environment, Lunar Sourcebook. Cambridge University Press, New York, pp. 2760.Google Scholar
Vrba, E.S., Denton, G.H., Partridge, T.C., Burckle, L.H., 1996. Paleoclimate and Evolution with Emphasis on Human Origins. Yale University, New Haven, p. 547 + ix.Google Scholar
Waters, M.R., 2019. Late Pleistocene exploration and settlement of the Americas by modern humans. Science 365, eaat5447.Google ScholarPubMed
Waters, M.R., Keene, J.L., Forman, S.L., Prewitt, E.R., Carlson, D.L., Wiederhold, J.E., 2018. Pre-Clovis projectile points at the Debra L. Friedkin site, Texas -Implications for the Late Pleistocene peopling of the Americas. Science Advances 4.CrossRefGoogle Scholar
Wilding, L.P., Lin, H., 2003. Advancing the frontiers of soil science towards a geoscience, in: Lin, H., Bouma, J., Pachepsky, Y. (Eds.), Hydropedology: Bridging disciplines, scales, and data. Geoderma, Denver, CO, pp. 257274.Google Scholar
Wood, B., Richmond, B.G., 2000. Human evolution: taxonomy and paleobiology. The Journal of Anatomy 197, 1960.CrossRefGoogle ScholarPubMed
Zalasiewicz, J., Williams, M., Haywood, A., Ellis, M., 2011. The Anthropocene: a new epoch of geological time? Philosophical Transactions of the Royal Society A 369, 835841.CrossRefGoogle ScholarPubMed
Zech, M., 2006. Evidence for Late Pleistocene climate changes from buried soils on the southern slopes of Mt. Kilimanjaro, Tanzania. Palaeogeography, Palaeoclimatology, Palaeoecology 242, 303312.CrossRefGoogle Scholar