Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T22:01:19.523Z Has data issue: false hasContentIssue false

Paleoenvironmental and geoarchaeological reconstruction from late Holocene slope records (Lower Huerva Valley, Ebro Basin, NE Spain)

Published online by Cambridge University Press:  20 January 2017

Fernando Pérez-Lambán*
Affiliation:
Universidad de Zaragoza, Departamento de Ciencias de la Antigüedad, C/ Pedro Cerbuna 12, Zaragoza 50009, Spain
José Luis Peña-Monné
Affiliation:
Universidad de Zaragoza, Departamento de Geografía y Ordenación del Territorio, C/ Pedro Cerbuna 12, Zaragoza 50009, Spain
Javier Fanlo-Loras
Affiliation:
Universidad de Zaragoza, Departamento de Ciencias de la Antigüedad, C/ Pedro Cerbuna 12, Zaragoza 50009, Spain
Jesús V. Picazo-Millán
Affiliation:
Universidad de Zaragoza, Departamento de Ciencias de la Antigüedad, C/ Pedro Cerbuna 12, Zaragoza 50009, Spain
David Badia-Villas
Affiliation:
Universidad de Zaragoza, Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior, Huesca 22071, Spain
Virginia Rubio-Fernández
Affiliation:
Universidad Autónoma de Madrid, Departamento de Geografía, Cantoblanco, Madrid 28049, Spain
Rosario García-Giménez
Affiliation:
Universidad Autónoma de Madrid, Departamento de Geología y Geoquímica, Cantoblanco, Madrid 28049, Spain
María M. Sampietro-Vattuone
Affiliation:
CONICET and Universidad Nacional de Tucumán, Laboratorio de Geoarqueología, San Miguel de Tucumán 4000, Argentina
*
*Corresponding author at: Universidad de Zaragoza, Facultad de Filosofía y Letras, Dpto. Ciencias de la Antigüedad—Prehistoria, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain. E-mail addresses:fperezlamban@gmail.com(F. Pérez-Lambán), jlpena@unizar.es(J.L. Peña-Monné), javierfanlo@gmail.com(J. Fanlo-Loras), jpicazo@unizar.es(J.V. Picazo-Millán), badia@unizar.es(D. Badia-Villas), virginia.rubio@uam.es(V. Rubio-Fernández), rosario.garcia@uam.es(R. García-Giménez), sampietro@tucbbs.com.ar(M.M. Sampietro-Vattuone).

Abstract

Slope deposits in semiarid regions are known to be very sensitive environments, especially those that occurred during the minor fluctuations of the late Holocene. In this paper we analyse Holocene colluvium genesis, composition, and paleoenvironmental meaning through the study of slope deposits in NE Spain. Two cumulative slope stages are described during this period. In the study area, both slope accumulations are superimposed and this has enabled an excellent preservation of the aggregative sequence and the paleosols corresponding to stabilisation stages. 14C and TL dating, as well as archaeological remains, provide considerable chronological precision for this sequence. The origin of the accumulation of the lower unit is placed around 4295–4083 cal yr BP/2346–2134 cal yr BC (late Chalcolithic) and it developed until the Iron Age in a cooler and wetter climate (Cold Iron Age). Under favourable conditions, a soil A-horizon was formed on top of this unit. A new slope accumulation was formed during the Little Ice Age. Within the slope two morphogenetic periods ending with A-horizons are distinguished and related with two main cold–wet climatic events. The study of these slopes provides a great amount of data for the paleoenvironmental and geoarchaeological reconstruction of the late Holocene in NE Spain.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, M.J. Thermoluminescence Dating. (1985). Academy Press, London. (359 pp.)Google Scholar
Badía-Villas, D., Martí, C., Palacio, E., Sancho, C., and Poch, R.M. Soil evolution over the Quaternary period in a semiarid climate (Segre River terraces, northeast Spain). Catena 77, (2009). 165174.CrossRefGoogle Scholar
Baize, D., and Girard, M.-C. Référentiel Pédologique 2008 Association Française pour l'Étude du Sol, Quae Ed. Paris. (2009). (405 pp.)Google Scholar
Benito, G., Thorndycraft, V.R., Rico, M., Sánchez-Moya, Y., and Sopeña, A. Palaeoflood and floodplain records from Spain: evidence for long-term climate variability and environmental, changes. Geomorphology 101, (2008). 6877.Google Scholar
Bintliff, J.L. Paleoclimatic modelling of environmental changes in the East Mediterranean region since the last glaciation. Bintliff, J.L., and Van Zeist, W. Paleoclimates, Paleoenvironments and Human Communities in the Eastern Mediterranean Region in Later Prehistory. (1982). BAR Int. Ser., 485527.Google Scholar
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G. A pervasive millennial-scale cycle in north Atlantic Holocene and glacial climates. Science 278, (1997). 12571266.Google Scholar
Boroda, R., Amit, R., Matmon, A., Team, A., Finkel, R., Porat, N., Enzel, Y., and Eyal, Y. Quaternary-scale evolution of sequences of talus flatirons in the hyperarid Negev. Geomorphology 127, (2011). 4152.CrossRefGoogle Scholar
Burillo, F., Gutiérrez-Elorza, M., and Peña-Monné, J.L. El cerro del castillo de Alfambra (Teruel). Estudio interdisciplinar de Geomorfología y Arqueología. Kalathos I, (1981). 763.Google Scholar
Chueca, J., and Julián, A. Datación de depósitos morrénicos de la Pequeña Edad del Hielo: Macizo de la Maladeta. Pérez-Alberti, A., Martín, I.P., Chesworth, W., and Martínez-Cortizas, A. Dinámica y evolución de medios cuaternarios. (1996). Xunta de Galicia, Santiago de Compostela. 171182.Google Scholar
Constante, A., and Peña-Monné, J.L. Human-induced Erosion and Sedimentation During the Holocene in the Central Ebro Depression, Spain, Congreso Internacional sobre Desertificación 2009. (2009). Universidad de Murcia, Murcia. 207210.Google Scholar
Constante, A., Peña-Monné, J.L., and Muñoz, A. Alluvial geoarchaeology of an ephemeral stream: implications for Holocene landscape change in the central part of the Ebro Depression, northeast Spain. Geoarchaeology 25, 4 (2010). 475496.Google Scholar
Constante, A., Peña-Monné, J.L., Muñoz, A., and Picazo, J.V. Climate and anthropogenic factors affecting alluvial fan development during the late Holocene in the central Ebro Valley, northeast Spain. The Holocene 21, (2011). 275286.Google Scholar
Corella, J.P., Amrani, A., Sigró, J., Morellón, M., Rico, E., and Valero-Garcés, B. Recent evolution of Lake Arreo, northern Spain: influences of land use change and climate. Journal of Paleolimnology 46, (2011). 469485.Google Scholar
Corella, J.P., Valero-Garcés, B., Moreno, A., Morellón, M., Rull, V., Giralt, S., Rico, M.T., and Pérez-Sanz, A. Climate and human impact on a meromictic lake during the last 6000 years (Montcortès Lake, Central Pyrenees, Spain). Journal of Paleolimnology 46, (2011). 351367.Google Scholar
Cuadrat, J.M., Saz-Sánchez, M.Á., and Vicente Serrano, S.M. Atlas climático de Aragón. (2007). Gobierno de Aragón, Zaragoza. (222 pp.)Google Scholar
Eidt, R.C. Detection and examination of anthrosols by phosphate analysis. Science 197, (1977). 13271333.CrossRefGoogle ScholarPubMed
Fleming, S.J. Thermoluminesce dating refinement of quartz inclusión method. Archaeometry 12, (1970). 1330.Google Scholar
Gerson, R. Talus relict in deserts: a key to major climatic fluctuations. Israel Journal of Earth Sciences 31, (1982). 123132.Google Scholar
Gribbin, J., and Lamb, H.H. Climatic change in historical times. Gribbin, J. Climatic Change. (1978). Elsevier Inc., 6882.Google Scholar
Gutiérrez, F., Valero-Garcés, B., Desir, G., González-Sampériz, P., Gutiérrez-Elorza, M., Linares, R., Zarroca, M., Moreno, A., Guerrero, J., Roqué, C., Arnold, L.J., and Demuro, M. Late Holocene evolution of playa lakes in the central Ebro depression based on geophysical surveys and morpho-stratigraphic analysis of lacustrine terraces. Geomorphology 196, (2013). 177197.Google Scholar
Gutiérrez-Elorza, M., and Peña-Monné, J.L. Geomorphology and Late Holocene climatic change in northeastern Spain. Geomorphology 23, (1998). 205217.CrossRefGoogle Scholar
Gutiérrez-Elorza, M., Sancho-Marcén, C., Arauzo, T., and Peña-Monné, J.L. Evolution and paleoclimatic meaning of the talus flatirons in the Ebro Basin, northeast Spain. Alsharham, A.S., Glennie, K.W., Whittle, G.L., and Kendall, C.G.S.C. Quaternary Deserts and Climatic Change. (1998). Balkema, Rotterdam. 593599.Google Scholar
Gutiérrez-Elorza, M., Gutiérrez, F., and Desir, G. Considerations on the chronological and causal relationship between talus flatirons and palaeoclimatic changes in central and northeast Spain. Geomorphology 73, (2006). 5063.Google Scholar
Gutiérrez-Elorza, M., Lucha, P., Gutiérrez, F., Moreno, A., Guerrero, J., Martín-Serrano, A., Nozal, F., Desir, G., Marín, C., and Bonachea, J. Are talus flatiron sequences in Spain climate-controlled landforms?. Zeitschriftfür Geomorphologie 54, 2 (2010). 243252.Google Scholar
IUSS Working Group WRB World reference base for soil resources 2006, first update2007. World Soil Resources Reports No. 103. (2007). FAO, Rome. (116 pp.)Google Scholar
Jalut, G., Esteban, A., Bonnet, L., Gauquelin, T., and Fontugne, M. Holocene climatic changes in the western Mediterranean, from south-east France to south-east Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 160, (2000). 255290.Google Scholar
Lamb, H. Climate: present, past and future. Climatic History and the Future 2, (1977). Methuen, Google Scholar
Leonardi, G., Miglavacca, M., and Nardi, S. Soil phosphorous analysis as an integrative tool for recognizing buried ancient ploughsoils. Journal of Archaeological Science 26, (1999). 343352.Google Scholar
Llasat, M.C., Barriendos, M., Barrera, A., and Rigo, T. Floods in Catalonia (NE Spain) since the 14th century. Climatological and meteorological aspects from historical documentary sources and old instrumental records. Journal of Hydrology 313, (2005). 3247.Google Scholar
Maasch, K.A., Mayewski, P.A., Rohling, E.J., Stager, J.C., Karlén, W., Meeker, L.D., and Meyerson, E.A. A 2000-year context for modern climate change. GeografiskaAnnaler Series A 87, 1 (2005). 715.CrossRefGoogle Scholar
Macklin, M.G., Benito, G., Gregory, K.J., Johnstone, E., Lewin, J., Michczyńska, D.J., Soja, R., Starkel, L., and Thorndycraft, V.R. Past hydrological events reflected in the Holocene fluvial record of Europe. Catena 66, (2006). 145154.Google Scholar
Mayewski, P.A., Rohling, E.E., Stager, J.C., Karlén, W., Maasch, K.A., Meeker, L.D., Meyerson, E.A., Gasse, F., Kreveld, S. v, Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.R., and Steig, E.J. Holocene climate variability. Quaternary Research 62, 3 (2004). 243255.Google Scholar
Morellón, M., Valero-Garcés, B., González-Sampériz, P., Vegas-Vilarrúbia, T., Rubio, E., Rieradevall, M., Delgado-Huertas, A., Mata, P., Romero, Ó., Engstrom, D.R., López-Vicente, M., Navas, A., and Soto, J. Climate changes and human activities recorded in the sediments of Lake Estanya (NE Spain) during the Medieval Warm Period and Little Ice Age. Journal of Paleolimnology 46, (2011). 423452.Google Scholar
Morellón, M., Pérez-Sanz, A., Corella, J.P., Büntgen, U., Catalán, J., González-Sampériz, P., González-Trueba, J.J., López-Sáez, J.A., Moreno, A., Pla-Rabes, S., Saz-Sánchez, M.Á., Scussolini, P., Serrano, E., Steinhilber, F., Stefanova, V., Vegas-Vilarrúbia, T., and Valero-Garcés, B. A multi-proxy perspective on millennium-long climate variability in the Southern Pyrenees. Climate of the Past 8, (2012). 683700.Google Scholar
Moreno, A., Pérez, A., Frigola, J., Nieto-Moreno, V., Rodrigo-Gámiz, M., González-Sampériz, P., Morellón, M., Martín-Puertas, C., Corella, J.P., Belmonte, Á., Sancho, C., Cacho, I., Herrera, G., Canals, M., Jiménez-Espejo, F., Martínez-Ruiz, F., Vegas, T., and Valero-Garcés, B. The medieval climate anomaly in the Iberian Peninsula reconstructed from marine and lake records. Quaternary Science Reviews 43, (2012). 1632.Google Scholar
Nambi, S.V., and Aitken, M.J. Annual dose conversion factors for TL and ESR dating. Archaeometry 28, (1986). 202205.CrossRefGoogle Scholar
Nelson, R.E., and Sommers, L.E. Total carbon and organic matter. Page, A.L., Miller, R.H., and Keeney, D.R. Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties (1982). American Society of Agronomy, Madison, Wisconsin. 539557.Google Scholar
Peña-Monné, J.L. Los valles holocenos del escarpe de yesos de Juslibol (sector central de la depresión del Ebro): Aspectos geomorfológicos y geoarqueológicos. Arqueología Espacial 15, (1996). 83102.Google Scholar
Peña-Monné, J.L., Echeverría, M.T., Petit-Maire, N., and Lafont, R. Cronología e interpretación de las acumulaciones holocenas de la val de Las Lenas (Depresión del Ebro, Zaragoza). Geographicalia 30, (1993). 321332.Google Scholar
Peña-Monné, J.L., González-Pérez, J.R., and Rodríguez, J.I. Paleoambientes y evolución geomorfológica en yacimientos arqueológicos del sector oriental de la depresión del Ebro durante el Holoceno superior. Pérez-Alberti, A., Martín, I.P., Chesworth, W., and Martínez-Cortizas, A. Dinámica y evolución de medios cuaternarios. (1996). Xunta de Galicia, Santiago de Compostela. 6380.Google Scholar
Peña-Monné, J.L., Echeverría, M.T., Chueca, J., and Julián, A. Processus géomorphologiques d'accumulation et incision pendant l'Antiquité Classique et ses rapport avec l'activité humaine et les changements climatiques holocènes dans la vallée de la Huerva (Bassin de l'Ebre, Espagne). Vermeulen, F., and De Dapper, M. Geoarchaeology of the landscapes of classical antiquity. (2001). Peeters, Leuven. 151159.Google Scholar
Peña-Monné, J.L., Julián, A., Chueca, J., Echeverría, M.T., and Ángeles, G.R. Etapas de evolución holocena en el valle del río Huerva: Geomorfología y Geoarqueología. Peña-Monné, J.L., Longares, L.A., and Sánchez-Fabre, M. Geografía Física de Aragón. Aspectos generales y temáticos (2004). Universidad de Zaragoza e Institución Fernando el Católico, Zaragoza. 289302.Google Scholar
Peña-Monné, J.L., Rubio-Fernández, V., and González-Pérez, J.R. Aplicación de modelos geomorfológicos evolutivos al estudio de yacimientos arqueológicos en medios semiáridos (Depresión del Ebro, España). APG A Geografia ibérica no contexto europeo (X Coloquio Ibérico de Geografía, 22–24 de Setembro de 2005). (2005). Universidade de Évora, (http://www.apgeo.pt/files/docs/CD_X_Coloquio_Iberico_Geografia/pdfs/076.pdf)Google Scholar
Pérez-Lambán, F., (2013). (unpublished). La Edad del Bronce en los cursos bajos de los ríos Huerva y Jalón. Geoarqueología y análisis espacial de los asentamientos. PhD Thesis, University of Zaragoza, . 791 p.Google Scholar
Pérez-Lambán, F., Fanlo-Loras, J., and Picazo-Millán, J.V. El poblamiento antiguo en el valle del río Huerva. Resultados de las campañas de prospección de 2007–2009. Salduie 10, (2011). 285316.Google Scholar
Picazo-Millán, J.V. Nuevas dataciones para la Edad del Bronce en la cuenca del río Alfambra (Teruel). Kalathos 18–19, (1999–2000). 726.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., HajdasI, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van derPlicht, J., and Weyhenmeyer, C.E. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50, 000 years cal BP. Radiocarbon 51, (2009). 11111150.Google Scholar
Rhoades, J.D. Soluble salts. Page, A.L., Miller, R.H., and Keeney, D.R. Methods of soil analysis. Part 2: Chemical and Microbiological Properties (1982). American Society of Agronomy, Madison, Wisconsin. 167180.Google Scholar
Roberts, N., Jones, M.D., Benkaddour, A., Eastwood, W.J., Filippi, M.L., Frogley, M.R., Lamb, H.F., Leng, M.J., Reed, J.M., Stein, M., Stevens, L., and Valero-Garcés, B.G.Z. Stable isotope records of Late Quaternary climate and hydrology from Mediterranean lakes: the ISOMED synthesis. Quaternary Science Reviews 27, (2008). 24262441.Google Scholar
Roberts, N., Moreno, A., Valero-Garcés, B., Corella, J.P., Jones, M., Allcock, S., Woodbridge, J., Morellón, M., Luterbacher, J., Xoplaki, E., and Türkeş, M. Palaeolimnological evidence for an east–west climate see-saw in the Mediterranean since AD 900. Global and Planetary Change 84–85, (2012). 2324.Google Scholar
Sampietro, M.M., Roldán, J., Neder, L., Maldonado, M.G., and Vattuone, M.A. Formative pre-Hispanic agricultural soils in northwest Argentina. Quaternary Research 75, 1 (2011). 3644.Google Scholar
Sancho-Marcén, C., Gutiérrez-Elorza, M., Peña-Monné, J.L., and Burillo Mozota, F. A quantitative approach to scarp retreat starting from triangular slope facets (Central Ebro Basin, Spain). Harvey, A.M., and Sala, M. Geomorphic Processes, Vol. II: Geomorphic Systems. Catena 13, (1988). 139146. (Suppl.) Google Scholar
Sancho-Marcén, C., Peña-Monné, J.L., Muñoz, A.G.B., McDonald, E., Rhodes, E., and Longares, L.A. Holocene alluvial morphosedimentary record and environmental changes in the Bardenas Reales Natural Park (NE Spain). Catena 73, (2008). 225238.Google Scholar
Saz-Sánchez, M.Á. Temperaturas y precipitaciones en la mitad Norte de España desde el s. XV. Estudio dendrocronológico. Publicaciones del Consejo Protección de la Naturaleza de Aragón, serie Investigación, Zaragoza. (2003). Google Scholar
Schlezinger, D.R., and Howes, B.L. Organic phosphorus and elemental ratios as indicators of prehistoric human occupation. Journal of Archaeological Science 27, (2000). 479492.CrossRefGoogle Scholar
Schmidt, K.H. Talus and pediment flatirons—indicators of climatic change on scarp slope on the Colorado Plateau, USA. Zeitschriftfür Geomorphologie 13, (1996). 135158. (Suppl.) Google Scholar
Soil Survey Staff (SSS), Keys to Soil Taxonomy. 11th edition (2010). USDA-Natural Resources Conservation Service, Washington.Google Scholar
Steinhilber, F., Abreu, J.A., Beer, J., Brunner, I., Christl, M., Fischer, H., Heikkilä, U., Kubik, P.W., Mann, M., McCracken, K.G., Miller, H., Miyahara, H., Oerter, H., and Wilhelms, F. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proceedings of the National Academy of Sciences (2012). http://dx.doi.org/10.1073/pnas.1118965109Google Scholar
Stuiver, M., and Reimer, P. Extended 14C data base and revised CALIB 3.0 14C age calibrating program. Radiocarbon 35, 1 (1993). 215230.Google Scholar
Thorndycraft, V.R., and Benito, G. Late Holocene fluvial chronology of Spain: the role of climatic variability and human impact. Catena 66, (2006). 3441.Google Scholar
Van Geel, B., Buurman, J., and Waterbolk, H.T. Archaeological and palaeoecological indications for an abrupt climate change in The Netherlands and evidence for climatological teleconnections around 2650 BP. Journal of Quaternary Science 11, (1996). 451460.Google Scholar
Zimmerman, D.W. Thermoluminescence dating using fine grain from pottery. Archaeometry 13, (1971). 2952.Google Scholar