Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T21:14:26.457Z Has data issue: false hasContentIssue false

Reconstruction of late Quaternary paleohydrologic Conditions in southeastern British Columbia using visible derivative spectroscopy of Cleland Lake Sediment

Published online by Cambridge University Press:  20 January 2017

Lorita N. Mihindukulasooriya*
Affiliation:
Department of Geology, Kent State University, Kent, OH, USA
Joseph D. Ortiz
Affiliation:
Department of Geology, Kent State University, Kent, OH, USA
David P. Pompeani
Affiliation:
Department of Geology and Planetary Science, University of Pittsburgh, Pittsburgh, PA, USA
Byron A. Steinman
Affiliation:
Department of Earth and Environmental Sciences and Large Lakes Observatory, University of Minnesota, Duluth, MN, USA
Mark B. Abbott
Affiliation:
Department of Geology and Planetary Science, University of Pittsburgh, Pittsburgh, PA, USA
*
*Corresponding author. E-mail address:lmihindu@kent.edu (L.N. Mihindukulasooriya).

Abstract

Visible derivative spectroscopy (VDS) analysis of sediment from Cleland Lake, Southeastern British Columbia provides a reconstruction of paleolimnological productivity and hydrologic change during the past 14,000 calibrated 14C years before present (cal yr BP). The first five principal components (PC) of the VDS data explain 97% of the variance in the VDS data set. Four PCs correlate with standard reflectance derivative spectra for diatom, dinoflagellate algae, and cyanophyte pigments that record ecological change, while two PCs are paleohydrologic indicators. Dinoflagellate algae are predominant from 11,600 to 8600 cal yr BP then decrease to low levels after ~ 8500 cal yr BP. PCs 3–5 represent variations in cyanophyte abundance and exhibit peaks from 14,000 to 11,600, 14,000 to 9500, and 6100 to 5400 cal yr BP, respectively. Conditions shifted toward favoring diatoms around 9400 and lasted until 170 cal yr BP. Higher dinoflagellate-related pigment concentrations suggest a lower lake level from 11,600 to 8600 cal yr BP, followed by higher water levels and wetter conditions after 8500 cal yr BP. We propose that drier conditions transitioning from the late glacial into the Holocene were caused by summer insolation-driven, non-linear feedbacks between the northern hemisphere subtropical high-pressure systems, vegetation, and soil moisture.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M.B., Stafford, T.W. jr. (1996). Radiocarbon geochemistry of modern and ancient arctic lake systems, Baffin island, Canada. Quaternary Research 45, 3 300311.Google Scholar
Alley, N. (1976). The palynology and palaeoclimatic significance of a dated core of Holocene peat, Okanagan valley, southern British Columbia. Canadian Journal of Earth Sciences 13, 8 11311144.Google Scholar
Alley, R.B., Marotzke, J., Nordhaus, W., Overpeck, J., Peteet, D., Pielke, R., Pierrehumbert, R., Rhines, P., Stocker, T., Talley, L. (2003). Abrupt climate change. Science 299, 20052010.Google Scholar
Baldi, E. (1941). Mechanismus der Rotfarbung im Tovel-See. Archiv fur Hydrobiologie. Mechanism of red coloration in Tovel-See (Freshwater Biological Association translation (New Series), No. 97. Available from the Librarian, Freshwater Biological Association.)38, 299302.Google Scholar
Barker, P., Roberts, N., Lamb, H., Van der Kaars, S., Benkaddour, A. (1994). Interpretation of Holocene lake-level change from diatom assemblages in Lake Sidi Ali, middle atlas, Morocco. Journal of Paleolimnology 12, 3 223234.Google Scholar
Barron, J.A., Heusser, L., Herbert, T., Lyle, M. (2003). High–resolution climatic evolution of coastal northern California during the past 16,000 years. Paleoceanography 18, 1 1020.CrossRefGoogle Scholar
Bartlein, P.J., Anderson, K.H., Anderson, P., Edwards, M., Mock, C., Thompson, R.S., Webb, R.S., Webb III, T., Whitlock, C. (1998). Paleoclimate simulations for North America over the past 21,000 years, features of the simulated climate and comparisons with paleoenvironmental data. Quaternary Science Reviews 17, 6–7 549585.Google Scholar
Battarbee, R.W. (2000). Palaeolimnological approaches to climate change, with special regard to the biological record. Quaternary Science Reviews 19, 1 107124.Google Scholar
Berger, A., Loutre, M. (1991). Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 4 297317.Google Scholar
Blaauw, M. (2010). Methods and code for classical age-modeling of radiocarbon sequences. Quaternary Geochronology 5, 512518.Google Scholar
Bouchard, F., Pienitz, R., Ortiz, J.D., Francus, P., Laurion, I. (2013). Palaeolimnological conditions inferred from fossil diatom assemblages and derivative spectral properties of sediments in thermokarst ponds of subarctic Quebec, Canada. Boreas 42, 3 575595.Google Scholar
Brenner, A.R. . (2014). Determination of Baffin Bay sediment composition variability and provenance. unpublished master thesis, pp 99.Google Scholar
Brown, E.T. (2011). Lake Malawi's response to “megadrought” terminations: sedimentary records of flooding, weathering and erosion. Palaeogeography, Palaeoclimatology, Palaeoecology 303, 1–4 120125.Google Scholar
Brown, E.T., Johnson, T., Scholz, C., Cohen, A., King, J. (2007). Abrupt change in tropical African climate linked to the bipolar seesaw over the past 55,000 years. Geophysical Research Letters 34, 20 L20702.Google Scholar
Brugam, R.B., McKeever, K., Kolesa, L. (1998). A diatom-inferred water depth reconstruction for an upper peninsula, Michigan Lake. Journal of Paleolimnology 20, 3 267276.Google Scholar
Chase, M., Bleskie, C., Walker, I.R., Gavin, D.G., Hu, F.S. (2008). Midge-inferred holocene summer temperatures in southeastern British Columbia, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 257, 1 244259.Google Scholar
Clark, R.N., Swayze, G.A., Wise, R., Livo, E., Hoefen, T., Kokaly, R., Sutley, S.J. (2007). USGS Digital Spectral Library splib06a: U.S. Geological Survey, Digital Data Series 231.Google Scholar
Clegg, B.F., Kelly, R., Clarke, G.H., Walker, I.R., Hu, F.S. (2011). Nonlinear response of summer temperature to Holocene insolation forcing in Alaska. Proceedings of the National Academy of Sciences 108, 48 1929919304.CrossRefGoogle ScholarPubMed
Connell, J.H., Slatyer, R.O. (1977). Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist 111, 982 11191144.Google Scholar
Cook, E.R., Woodhouse, C.A., Eakin, C.M., Meko, D.M., Stahle, D.W. (2004). Long-term aridity changes in the western United States. Science 306, 5698 10151018.Google Scholar
Cook, E.R., Seager, R., Heim, R.R.J., Vose, R.S., Herweijer, C., Woodhouse, C. (2010). Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context. Journal of Quaternary Sciences 25, 4861.Google Scholar
Das, B., Vinebrooke, R.D., Sanchez-Azofeifa, A., Rivard, B., Wolfe, A.P. (2005). Inferring sedimentary chlorophyll concentrations with reflectance spectroscopy: a novel approach to reconstructing historical changes in the trophic status of mountain lakes. Canadian Journal of Fisheries and Aquatic Sciences 62, 5 10671078.Google Scholar
deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., Yarusinsky, M. (2000). Abrupt onset and termination of the African humid period: rapid climate responses to gradual insolation forcing. Quaternary Science Reviews 19, 1 347361.Google Scholar
Diffenbaugh, N.S., Sloan, L.C. (2004). Mid-Holocene orbital forcing of regional-scale climate: a case study of Western North America using a high-resolution RCM. Journal of Climate 17, 15 29272937.Google Scholar
Diffenbaugh, N.S., Ashfaq, M., Shuman, B., Williams, J.W., Bartlein, P.J. (2006). Summer aridity in the United States: response to mid-Holocene changes in insolation and sea surface temperature. Geophysical Research Letters 33, L22712.Google Scholar
Eberl, D.D. (2003). User guide to RockJock—a program for determining quantitative mineralogy from X-ray diffraction data. USGS Open File Report OF 03-7840.Google Scholar
Eberl, D.D. (2004). Quantitative mineralogy of the Yukon River system: variations with reach and season, and determining sediment provenance. American Mineralogist 89, 17841794.Google Scholar
Fabbro, L.D., Duivenvoorden, L.J. (2000). A two-part model linking multidimensional environmental gradients and seasonal succession of phytoplankton assemblages. Hydrobiologia 438, 1 1324.Google Scholar
Flores, L.N., Barone, R. (1998). Phytoplankton dynamics in two reservoirs with different trophic state (Lake Rosamarina and Lake Arancio, Sicily, Italy). Hydrobiologia 369, 163178.Google Scholar
Folkoff, M.E., Meentemeyer, V. (1987). Climatic control of the geography of clay minerals genesis. Annals of the Association of American Geographers 77, 4 635650.Google Scholar
Fritz, S.C. (2008). Deciphering climatic history from lake sediments. Journal of Paleolimnology 39, 1 516.Google Scholar
Galloway, J.M., Lenny, A.M., Cumming, B.F. (2011). Hydrological change in the central interior of British Columbia, Canada: diatom and pollen evidence of millennial-to-centennial scale change over the Holocene. Journal of Paleolimnology 45, 2 183197.Google Scholar
Gantt, E. (1975). Phycobilisomes: light-harvesting pigment complexes. Bioscience 25, 12 781788.Google Scholar
Gavin, D.G., Henderson, A.C.G., Westover, K.S., Fritz, S.C., Walker, I.R., Leng, M.J., Hu, F.S. (2011). Abrupt Holocene climate change and potential response to solar forcing in western Canada. Quaternary Science Reviews 30, 9 12431255.Google Scholar
George, D., Heaney, S. (1978). Factors influencing the spatial distribution of phytoplankton in a small productive lake. Journal of Ecology 66, 1 133155.Google Scholar
Graham, L., Wilcox, L. (2000). Algae. Prentice Hall, 640.Google Scholar
Grover, J.P., Chrzanowski, T.H. (2006). Seasonal dynamics of phytoplankton in two warm temperate reservoirs: association of taxonomic composition with temperature. Journal of Plankton Research 28, 1 117.CrossRefGoogle Scholar
Hallett, D.J., Hills, L.V. (2006). Holocene vegetation dynamics, fire history, lake level and climate change in the Kootenay valley, southeastern British Columbia, Canada. Journal of Paleolimnology 35, 2 351371.CrossRefGoogle Scholar
Heaney, S., Talling, J. (1980). Dynamic aspects of dinoflagellate distribution patterns in a small productive lake. Journal of Ecology 68, 1 7594.Google Scholar
Heinsalu, A., Luup, H., Alliksaar, T., Nöges, P., Nöges, T. (2008). Water level changes in a large shallow lake as reflected by the plankton:periphyton-ratio of sedimentary diatoms. European Large Lakes Ecosystem Changes and their Ecological and Socioeconomic Impacts 599(1), 2330.Google Scholar
Heiri, O., Lotter, A.F., Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology 25, 1 101110.Google Scholar
Hu, A., Meehl, G.A., Otto-Bliesner, B.L., Waelbroeck, C., Han, W., Loutre, M., Lambeck, K., Mitrovica, J.X., Rosenbloom, N. (2010). Influence of Bering strait flow and north Atlantic circulation on glacial sea-level changes. Nature Geoscience 3, 2 118121.Google Scholar
Johnson, T.C., Brown, E.T., Shi, J. (2011). Biogenic silica deposition in lake Malawi, east Africa over the past 150,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 303, 1–4 103109.Google Scholar
Kalff, J. (2003). Limnology: inland water ecosystems. Prentice Hall, 592.Google Scholar
Kaufman, D., Ager, T., Anderson, N., Anderson, P., Andrews, J., Bartlein, P. (2004). Holocene thermal maximum in the western Arctic (0–180 W). Quaternary Science Reviews 23, 5 529560.Google Scholar
Kienast, S.S., McKay, J.L. (2001). Sea surface temperatures in the subarctic northeast Pacific reflect millennial-scale climate oscillations during the last 16 kyrs. Geophysical Research Letters 28, 8 15631566.Google Scholar
Knapp, P.A., Soulé, P.T., Grissino-Mayer, H.D. (2004). Occurrence of sustained droughts in the interior Pacific Northwest (AD 1733–1980) inferred from tree-ring data. Journal of Climate 17, 140150.Google Scholar
Kruk, C., Mazzeo, N., Lacerot, G., Reynolds, C. (2002). Classification schemes for phytoplankton: a local validation of a functional approach to the analysis of species temporal replacement. Journal of Plankton Research 24, 9 901912.CrossRefGoogle Scholar
Leng, M.J., Marshall, J.D. (2004). Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews 23, 7–8 811831.Google Scholar
Liu, Z., Colin, C., Huang, W., Le, K.P., Tong, S., Chen, Z. (2007). Climatic and tectonic controls on weathering in south China and Indochina Peninsula: clay mineralogical and geochemical investigations from the pearl, red, and Mekong drainage basins. Geochemistry, Geophysics, Geosystems 8, 5 118.Google Scholar
Lowe, D.J., Green, J.D., Northcote, T.G., Hall, K.J. (1997). Holocene fluctuations of a meromictic lake in southern British Columbia. Quaternary Research 48, 1 100113.Google Scholar
Mann, M.E., Cane, M.A., Zebiak, S.E., Clement, A. (2005). Volcanic and solar forcing of the tropical Pacific over the past 1,000 years. Journal of Climate 18, 3 447456.Google Scholar
Mathewes, R.W., Heusser, L.E. (1981). A 12,000 year palynological record of temperature and precipitation trends in southwestern British Columbia. Canadian Journal of Botany 59, 5 707710.Google Scholar
Mayewski, P.A., Rohling, E.E., Curt Stager, J., Karlén, W., Maasch, K.A., David Meeker, L., Meyerson, E.A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.R., Steig, E.J. (2004). Holocene climate variability. Quaternary Research 62, 243255.CrossRefGoogle Scholar
McCabe, G.J., Palecki, M.A., Betancourt, J.L. (2004). Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proceedings of the National Academy of Sciences 101, 12 4136.Google Scholar
Moore, R., Spittlehouse, D., Whitfield, P., Stahl, K. (2010). Weather and climate. Compendium of Forest Hydrology and Geomorphology in British Columbia (Editors RG Pike, TE Redding, RD Moore, RD Winkler, KD Bladon) Land Management Handbook 66, 4784.Google Scholar
Müller-Navarra, D., Güss, S., von Storch, H. (1997). Interannual variability of seasonal succession events in a temperate lake and its relation to temperature variability. Global Change Biology 3, 5 429438.Google Scholar
Nara, F., Tani, Y., Soma, Y., Soma, M., Naraoka, H., Watanabe, T. (2005). Response of phytoplankton productivity to climate change recorded by sedimentary photosynthetic pigments in lake Hovsgol (Mongolia) for the last 23,000 years. Quaternary International 136, 1 7181.Google Scholar
Nelson, D.B., Abbott, M.B., Steinman, B., Polissar, P.J., Stansell, N.D., Ortiz, J.D., Rosenmeier, M.F., Finney, B.P., Riedel, J. (2011). Drought variability in the Pacific northwest from a 6,000-yr lake sediment record. Proceedings of the National Academy of Sciences 108, 10 38703875.Google Scholar
Nöges, T., Nöges, P. (1999). The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake. Hydrobiologia 408, 409 277283.Google Scholar
Nöges, T., Nöges, P., Laugaste, R. (2003). Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake. Hydrobiologia 506, 1–3 257263.Google Scholar
Ortiz, J.D. (2011). Application of Visible/near Infrared derivative spectroscopy to Arctic paleoceanography, IOP Conference. Series: Earth and Environmental Science 14, 113.Google Scholar
Ortiz, J.D., Mix, A., Harris, S., O'Connell, S. (1999). Diffuse spectral reflectance as a proxy for percent carbonate content in north Atlantic sediments. Paleoceanography 14, 2 171186.CrossRefGoogle Scholar
Ortiz, J.D., Polyak, L., Grebmeier, J.M., Darby, D.A., Eberl, D.D., Naidu, S., Nof, D. (2009). Provenance of Holocene sediment on the Chukchi-Alaskan margin based on combined diffuse spectral reflectance and quantitative X-ray diffraction analysis. Global and Planetary Change 68, 7384.Google Scholar
Ortiz, J.D., Nof, D., Polyak, L., St-Onge, G., Lisé-Pronovost, A., Naidu, S., Darby, D., Brachfeld, S. (2012). The Late Quaternary flow through the Bering Strait has been forced by the Southern Ocean winds. Journal of Physical Oceanography 42, 11 20142029.Google Scholar
Overpeck, J.T., Cole, J.E. (2006). Abrupt change in Earth's climate system. Annual Review of Environment and Resources 31, 131.Google Scholar
Palmer, S., Walker, I., Heinrichs, M., Scudder, G. (2002). Postglacial midge community change and Holocene palaeotemperature reconstructions near treeline, southern British Columbia (Canada). Journal of Paleolimnology 28, 4 469490.Google Scholar
Peet, R.K., Christensen, N.L. (1980). Succession: a Population Process. Springer, 140.Google Scholar
Pellatt, M.G., Mathewes, R.W., Clague, J.J. (2002). Implications of a late-glacial pollen record for the glacial and climatic history of the Fraser lowland, British Columbia. Palaeogeography, Palaeoclimatology, Palaeoecology 180, 1 147157.Google Scholar
Peteet, D., Beck, W., Ortiz, J., O'Connell, D.S., Kurdyla, , Mann, D. (2003). Rapid vegetational and sediment change from Rano Aroi Crater, Easter Island. Loret, J., Tanacredi, J. Easter Island: Scientific Exploration into the World's Environmental Problems in Microcosm Kluwer/Plenum Publishers, 8192.Google Scholar
Peteet, D., Del Genio, A., Lo, K.K.W. (1997). Sensitivity of northern hemisphere air temperatures and snow expansion to North Pacific sea surface temperatures in the Goddard Institute for Space Studies general circulation model. Journal of Geophysical Research: Atmospheres (1984–2012) 102, D20 2378123791.Google Scholar
Pickett, S., Collins, S., Armesto, J. (1987). Models, mechanisms and pathways of succession. The Botanical Review 53, 3 335371.Google Scholar
Pompeani, D., Steinman, B., Abbott, M. (2012). A sedimentary and geochemical record of water-level changes from Rantin lake, Yukon, Canada. Journal of Paleolimnology 48, 1 147158.Google Scholar
Reimer, P.J., Baillie, M.G., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Burr, G.S., Edwards, R.L. (2009). IntCal09 and Marine 09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, 4 11111150.CrossRefGoogle Scholar
Renssen, H., Seppä, H., Heiri, O., Roche, D., Goosse, H., Fichefet, T. (2009). The spatial and temporal complexity of the Holocene thermal maximum. Nature Geoscience 2, 6 411414.Google Scholar
Rhoton, F., Smeck, N., Wilding, L. (1979). Preferential clay mineral erosion from watersheds in the Maumee river basin. Journal of Environmental Quality 8, 4 547550.Google Scholar
Robertson, P.K., Lawton, L.A., Cornish, B.J. (1999). The involvement of phycocyanin pigment in the photodecomposition of the cyanobacterial toxin, microcystin-LR. Journal of Porphyrins and Phthalocyanines 3, 544551.Google Scholar
Ruffell, A., McKinley, J.M., Worden, R.H. (2002). Comparison of clay mineral stratigraphy to other proxy palaeoclimate indicators in the mesozoic of NW Europe. Philosophical Transactions of the Royal Society of London. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences 360, 1793 675693.Google Scholar
Rosenberg, S.M., Walker, I.R., Mathewes, R.W., Hallett, D.J. (2004). Midge-inferred Holocene climate history of two subalpine lakes in southern British Columbia, Canada. The Holocene 14, 2 258271.Google Scholar
Sanger, J.E. (1988). Fossil pigments in paleoecology and paleolimnology. Palaeogeography, Palaeoclimatology, Palaeoecology 62, 1 343359.Google Scholar
Sanger, J.E., Crowl, G. (1979). Fossil pigments as a guide to the paleolimnology of browns lake, Ohio. Quaternary Research 11, 3 342352.Google Scholar
Sanger, J.E., Gorham, E. (1972). Stratigraphy of fossil pigments as a guide to the postglacial history of Kirchner Marsh, Minnesota. Limnology and Oceanography 17, 6 840854.Google Scholar
Schagerl, M., Donabaum, K. (2003). Patterns of major photosynthetic pigments in freshwater algae.1. 1. Cyanoprokaryota, Rhodophyta and Cryptophyta. Annales de limnologie Cambridge University Press, 3547.Google Scholar
Schagerl, M., Pichler, C., Donabaum, K. (2003). Patterns of major photosynthetic pigments in freshwater algae. 2. Dinophyta, Euglenophyta, Chlorophyceae and Charales. Annales de limnologie Cambridge University Press, 4962.Google Scholar
Shin, S.I., Sardeshmukh, P.D., Webb, R.S., Oglesby, R.J., Barsugli, J.J. (2006). Understanding the mid-Holocene climate. Journal of Climate 19, 12 28012817.Google Scholar
Shinker, J.J., Bartlein, P.J. (2010). Spatial variations of effective moisture in the western United States. Geophysical Research Letters 37, 2 L02701 (15.).Google Scholar
Shuman, B., Bartlein, P., Logar, N., Newby, P., Webb III, T. (2002). Parallel climate and vegetation responses to the early Holocene collapse of the Laurentide Ice Sheet. Quaternary Science Reviews 21, 16 17931805.Google Scholar
Shuman, B., Henderson, A.K., Colman, S.M., Stone, J.R., Fritz, S.C., Stevens, L.R., Whitlock, C. (2009). Holocene lake-level trends in the Rocky Mountains, USA. Quaternary Science Reviews 28, 19 18611879.Google Scholar
Shuman, B., Pribyl, P., Minckley, T.A., Shinker, J.J. (2010). Rapid hydrologic shifts and prolonged droughts in rocky mountain headwaters during the Holocene. Geophysical Research Letters 37, 6 L06701.Google Scholar
Stahl, K., Moore, R.D., Mckendry, I.G. (2006). The role of synoptic–scale circulation in the linkage between large–scale ocean–atmosphere indices and winter surface climate in British Columbia, Canada. International Journal of Climatology 26, 4 541560.Google Scholar
Steinman, B.A., Rosenmeier, M.F., Abbott, M.B., Bain, D.J. (2010a). The isotopic and hydrologic response of small, closed-basin lakes to climate forcing from predictive models: application to paleoclimate studies in the upper Columbia River basin. Limnology and Oceanography 55, 6 21312145.Google Scholar
Steinman, B.A., Rosenmeier, M.F., Abbott, M.B. (2010b). The isotopic and hydrologic response of small, closed-basin lakes to climate forcing from predictive models: simulations of stochastic and mean-state precipitation variations. Limnology and Oceanography 55, 6 22462261.Google Scholar
Steinman, B.A., Abbott, M.B., Mann, M.E., Stansell, N.D., Finney, B.P. (2012). 1500 year quantitative reconstruction of winter precipitation in the Pacific Northwest. Proceedings of the National Academy of Sciences of the United States of America 109, 1161911623.Google Scholar
Steinman, B.A., Abbott, M.B., Mann, M.E., Ortiz, J.D., Feng, S., Pompeani, D.P., Stansell, N.D., Anderson, L., Finney, B.P., Bird, B.W. (2014). Ocean–atmosphere forcing of centennial hydroclimate variability in the Pacific Northwest. Geophysical Research Letters 47, 7 25532560.Google Scholar
Stone, J.R., Fritz, S.C. (2006). Multidecadal drought and Holocene climate instability in the rocky mountains. Geology 34, 5 409412.Google Scholar
Sze, P. (1993). A Biology of the Algae. Wm C. Brown Publishers, 267.Google Scholar
Talbot, M. (1990). A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology: Isotope Geoscience Section 80, 4 261279.Google Scholar
Tierney, J.E., deMenocal, P.B. (2013). Abrupt shifts in Horn of Africa hydroclimate since the Last Glacial Maximum. Science 342, 6160 843846.Google Scholar
Tierney, J.E., Russell, J.M., Huang, Y., Damste, J.S., Hopmans, E.C., Cohen, A.S. (2008). Northern hemisphere controls on tropical southeast African climate during the past 60,000 years. Science (New York, N.Y.) 322, 5899 252255.Google Scholar
Toepel, J., Langner, U., Wilhelm, C. (2005). Combination of flow cytometry and single cell absorption spectroscopy to study the phytoplankton structure and to calculate the chlorophyll-a specific absorption coefficients at the taxon level1. Journal of Phycology 41, 10991109.Google Scholar
Viau, A.E., Gajewski, K., Fines, P., Atkinson, D.E., Sawada, M.C. (2002). Widespread evidence of 1500 yr climate variability in North America during the past 14,000 yr. Geology 30, 5 455458.Google Scholar
Walker, I.R., Pellatt, M.G. (2003). Climate change in coastal British Columbia—a paleoenvironmental perspective. Canadian Water Resources Journal 28, 4 531566.Google Scholar
Whitlock, C., Dean, W.E., Fritz, S.C., Stevens, L.R., Stone, J.R., Power, M.J. (2012). Holocene seasonal variability inferred from multiple proxy records from Crevice Lake, Yellowstone national park, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 331, 90103.Google Scholar
Williams, D. (1995). Continental climate response to orbital forcing from biogenic silica records in lake Baikal. Nature 378, 769771.Google Scholar
Williams, J.W., Shuman, B., Bartlein, P.J., Diffenbaugh, N.S., Webb, T. (2010). Rapid, time-transgressive, and variable responses to early Holocene midcontinental drying in North America. Geology 38, 2 135138.Google Scholar
Wilson, J.B. (1994). The ‘intermediate disturbance hypothesis’ of species coexistence is based on patch dynamics. New Zealand Journal of Ecology 18, 2 176181.Google Scholar
Wolfe, A.P., Vinebrooke, R.D., Michelutti, N., Rivard, B., Das, B. (2006). Experimental calibration of lake-sediment spectral reflectance to chlorophyll a concentrations: methodology and paleolimnological validation. Journal of Paleolimnology 36, 1 91100.Google Scholar
Wu, X., Kong, F., Chen, Y., Qian, X., Zhang, L., Yu, Y. (2010). Horizontal distribution and transport processes of bloom-forming Microcystis in a large shallow lake (Taihu, China). Limnologica-Ecology and Management of Inland Waters 40, 1 815.Google Scholar
Yurco, L.N., Ortiz, J.D., Polyak, L., Darby, D.A., Crawford, K.A. (2010). Clay mineral cycles identified by diffuse spectral reflectance in Quaternary sediments from the Northwind Ridge: implications for glacial–interglacial sedimentation patterns in the Arctic Ocean. Polar Research 29, 2 176197.Google Scholar
Supplementary material: File

Mihindukulasooriya et al. supplementary material

Table S1

Download Mihindukulasooriya et al. supplementary material(File)
File 16.7 KB