Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-03T00:40:50.261Z Has data issue: false hasContentIssue false

Anomalous Radiocarbon Dates from the Early Medieval Cremation Graves from Broechem (Flanders, Belgium): Reservoir or Old Wood Effects?

Published online by Cambridge University Press:  14 January 2020

Rica Annaert
Affiliation:
Flanders Heritage Agency, Herman Teirlinck building, Havenlaan 88 box 5, 1000Brussels, Belgium
Mathieu Boudin
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, 1000, Brussels, Belgium
Koen Deforce
Affiliation:
Flanders Heritage Agency, Herman Teirlinck building, Havenlaan 88 box 5, 1000Brussels, Belgium Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000Brussels, Belgium
Anton Ervynck*
Affiliation:
Flanders Heritage Agency, Herman Teirlinck building, Havenlaan 88 box 5, 1000Brussels, Belgium
Kristof Haneca
Affiliation:
Flanders Heritage Agency, Herman Teirlinck building, Havenlaan 88 box 5, 1000Brussels, Belgium
An Lentacker
Affiliation:
Flanders Heritage Agency, Herman Teirlinck building, Havenlaan 88 box 5, 1000Brussels, Belgium
Christophe Snoeck
Affiliation:
Analytical, Environmental & Geo-Chemistry, Dept. of Chemistry, Vrije Universiteit Brussel, AMGC-WE-VUB, Pleinlaan 2, 1050Brussels, Belgium G-Time Laboratory, Université Libre de Bruxelles, CP 160/02, 50, Avenue F.D. Roosevelt, 1050Brussels, Belgium
*
*Corresponding author. Email: anton.ervynck@vlaanderen.be

Abstract

As part of the study of the early medieval cemetery at Broechem (Belgium), human bones from 32 cremation graves have been dated through radiocarbon (14C) analysis. It was noted that many of the dates were not in accordance with the chronological ranges provided by the characteristics of the cultural artifacts deposited in the graves. In fact, the human bones were “older” than the artifacts. Subsequently, a number of animal bones (in all cases from domestic pigs) was radiocarbon dated, yielding dates that were more consistent with the information from the cultural artifacts than the human bones. The dates obtained on human and pig bones from the same grave often differed around 100 radiocarbon years. This paper tries to find an explanation for the pattern observed, concentrating on two hypotheses: aquatic reservoir versus old wood effects. The evaluation takes into account additional radiocarbon dates derived from charcoal fragments of the funeral pyre, from both short-lived and long-lived taxa. A conclusive explanation for the anomalous radiocarbon dates could not be reached but clear suggestions can be put forward for future experimental work that will without doubt shed more light upon the interpretational problems raised.

Type
Research Article
Copyright
© 2020 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annaert, R. 2010. Enkele voorlopige resultaten van vroeg- en volmiddeleeuws nederzettingsonderzoek in de Antwerpse Kempen en omstreken. In: Stevens, F, Landuyt, G, Gielis, M, editors. Het Turnhoutse geheugen van Brabant. Opstellen over de geschiedenis van Turnhout, de Antwerpse Kempen en het hertogdom Brabant aangeboden aan Harry de Kok, deel 1. Jaarboek van de Koninklijke geschied- en oudheidkundige kring van de Antwerpse Kempen, Taxandria 2009 - LXXXI. Turnhout: Koninklijke geschied- en oudheidkundige kring van de Antwerpse Kempen. p. 4782.Google Scholar
Annaert, R. 2018a. A status quaestionis of the early medieval burial archaeology in the Flemish part of the Meuse-Demer-Scheldt region. In: Kars, M, Van Oosten, R, Roxburgh, MA, Verhoeven, A, editors. Rural riches & royal rags? Studies on medieval and modern archaeology, presented to Frans Theuws. Zwolle: spa-uitgevers. p. 6568.Google Scholar
Annaert, R, editor. 2018b. Het vroegmiddeleeuwse grafveld van Broechem (gemeente Ranst, Provincie Antwerpen, België). Merovingian archaeology in the Low Countries 5. Bonn: Habelt Verlag.Google Scholar
Annaert, R, Ervynck, A. 2013. The elite as individualised members of a local community: the Merovingian cemetery at Broechem (Antwerp, Belgium). In: Ludowici, B, editor. Individual and individuality? Approaches towards an archaeology of personhood in the first millennium AD. Neue Studien zur Sachsenforschung 4. Hannover: Niedersächsischen Landesmuseum and Internationalen Sachsensymposion. p. 107116.Google Scholar
Beerenhout, B. 2016. Vis. In: Dijkstra, MFP, Verhoeven, AAA, van Straten, KCJ, editors. Nieuw licht op Leithon. Archeologisch onderzoek naar de vroegmiddeleeuwse bewoning in plangebied Leiderdorp - Plantage. Themata 8. Amsterdam: Universiteit van Amsterdam/Diachron UvA bv. p. 625674.Google Scholar
Boudin, M, Boeckx, P, Vandenabeele, P, Van Strydonck, M. 2014. An archaeological mystery revealed by radiocarbon dating of cross-flow nanofiltrated amino acids derived from bone collagen, silk, and hair: case study of the bishops Baldwin I and Radbot II from Noyon-Tournai. Radiocarbon 56(2):603617.Google Scholar
Brits, D, Steyn, M, L’Abbé, EN. 2014. A histomorphological analysis of human and non-human femora. International journal of legal medicine 128(2):369377.CrossRefGoogle ScholarPubMed
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.CrossRefGoogle Scholar
Bugmann, H. 1994. On the ecology of mountainous forests in a changing climate: a simulation study. Unpublished PhD Thesis. Zurich: ETH Zurich.Google Scholar
Cook, GT, Bonsall, C, Hedges, REM, McSweeney, K, Boroneant, V, Bartosiewicz, L, Pettitt, PB. 2002. Problems of dating human bones from the Iron Gates. Antiquity 76:7785.CrossRefGoogle Scholar
Cooremans, B. 2018. Zaden en vruchten uit de crematiegraven. In: Annaert, R, editor. Het vroegmiddeleeuwse grafveld van Broechem (gemeente Ranst, Provincie Antwerpen, België). Merovingian Archaeology in the Low Countries 5. Bonn: Habelt Verlag. p. 208210.Google Scholar
Debruyne, S, Annaert, R, Clerbaut, T, Haneca, K, Lentacker, A. 2015. Daar bij Groot Cueteghem. Een rurale nederzetting uit de vroege en volle middeleeuwen te Hove. Relicta. Archeologie, Monumenten- en Landschapsonderzoek in Vlaanderen 14:205286.Google Scholar
Deforce, K. 2017. Wood use in a growing medieval city. The overexploitation of woody resources in Ghent (Belgium) between the 10th and 12th century AD. Quaternary International 458:123133.CrossRefGoogle Scholar
Deforce, K. 2018. Houtskool. In: Annaert, R, editor. Het vroegmiddeleeuwse grafveld van Broechem (gemeente Ranst, Provincie Antwerpen, België). Merovingian archaeology in the Low Countries 5. Bonn: Habelt Verlag. p 199202.Google Scholar
De Mulder, G, Van Strydonck, M, Annaert, R, Boudin, M. 2012. A Merovingian surprise: early medieval radiocarbon dates on cremated bone (Borsbeek, Belgium). Radiocarbon 54(3–4):581588.CrossRefGoogle Scholar
Dobney, K, Ervynck, A. 2007. To fish or not to fish? Evidence for the possible avoidance of fish consumption during the Iron Age around the North Sea. In: Haselgrove, C, Moore, T, editors. The Later Iron Age in Britain and beyond. Oxford: Oxbow Books. p 403418.Google Scholar
Dufraisse, A, Coubray, S, Girardclos, O, Dupin, A, Lemoine, M. 2018. Contribution of tyloses quantification in earlywood oak vessels to archaeological charcoal analyses. Estimation of a minimum age and influences of physiological and environmental factors. Quaternary International 463:250257.CrossRefGoogle Scholar
Eggermont, N, Annaert, R, Bastiaens, J, Derese, C, Vandenberghe, D, Van Den Haute, P, Haneca, K, Van Strydonck, M. 2008. Nederzettingssporen uit de ijzertijd en de vroege middeleeuwen onder een stuifduin te Pulle (gem. Zandhoven, prov. Antwerpen). Intern VIOE-rapport. Brussel.Google Scholar
Ellingham, STD, Thompson, TJU, Islam, M, Taylor, G. 2015. Estimating temperature exposure of burnt bone - A methodological review. Science & Justice 55(3):181188.CrossRefGoogle Scholar
Ervynck, A, Boudin, M, Van den Brande, T, Van Strydonck, M. 2014. Dating human remains from the historical period in Belgium. Diet changes and the impact of marine and freshwater reservoir effects. Radiocarbon 56(2):779788.CrossRefGoogle Scholar
Ervynck, A, Boudin, M, Van Neer, W. 2018. Assessing the radiocarbon freshwater reservoir effect for a Northwest-european river system (the Schelde basin, Belgium). Radiocarbon 60(2):395417.CrossRefGoogle Scholar
Ervynck, A, Lentacker, A. 2018. Dierlijke resten. In: Annaert, R, editor. Het vroegmiddeleeuwse grafveld van Broechem (gemeente Ranst, Provincie Antwerpen, België). Merovingian Archaeology in the Low Countries 5. Bonn: Habelt Verlag. p. 195198.Google Scholar
European Standard 350-2 1994. Durability of wood and woodbased products - Natural durability of solid wood - Part 2. Guide to natural durability and treatability of selected species of importance in Europe. European Standard 350-2. European Committee for Standardization.Google Scholar
Fennessy, J. 2004. Common alder (Alnus glutinosa) as a forest tree in Ireland. Reproduction Material 8:8084.Google Scholar
Fitzpatrick, AP, Hamilton, D, Haselgrove, C. 2017. Radiocarbon dating and Bayesian Modelling of the Late Iron Age cremation burial cemetery at Westhampnett (West Sussex/GB). Archäologisches Korrespondenzblatt 47(3):359382.Google Scholar
Fuller, BT, Müldner, G, Van Neer, W, Ervynck, A, Richards, MP. 2012. Carbon and nitrogen stable isotope ratio analysis of freshwater, brackish and marine fish from Belgian archaeological sites (1st and 2nd millennium AD). Journal of Analytical Atomic Spectrometry 27:807820.CrossRefGoogle Scholar
Haneca, K. 2010. Verslag dendrochronologisch onderzoek: Hout van de archeologische site Belzele - Koolstraat (EVE-KS-08), te Evergem (No. 2010-014). Rapporten Natuurwetenschappelijk Onderzoek OE. Brussel.Google Scholar
Haneca, K. 2011. Verslag dendrochronologisch onderzoek. Bekisting waterputten van de archeologische site Flanders Expo (the Loop 2010) te Sint-Denijs-Westrem (prov. Oost-Vlaanderen) (No. 2011-002). Rapporten Natuurwetenschappelijk Onderzoek VIOE. Brussel.Google Scholar
Haneca, K. 2012. Verslag dendrochronologisch onderzoek. Bekisting van een waterput van de archeologische site Hoogstraat (NEV-HOOG-10) te Nevele (prov. Oost-Vlaanderen) (No. 2012-010). Rapporten Natuurwetenschappelijk Onderzoek OE. Brussel.Google Scholar
Haneca, K, Cufar, K, Beeckman, H. 2009. Oaks, tree-rings and wooden cultural heritage: a review of the main characteristics and applications of oak dendrochronology in Europe. Journal of Archaeological Science 36:111.CrossRefGoogle Scholar
Haneca, K, Deforce, K. 2018. Gemineraliseerd hout op grafgiften. In: Annaert, R, editor. Het vroegmiddeleeuwse grafveld van Broechem (gemeente Ranst, Provincie Antwerpen, België). Merovingian Archaeology in the Low Countries 5, Bonn: Habelt Verlag. p. 202208.Google Scholar
Haneca, K, Deforce, K, Boone, MN, Van Loo, D, Dierick, M, Van Acker, J, Van den Bulcke, J. 2012. X‐ray sub‐micron tomography as a tool for the study of archaeological wood preserved through the corrosion of metal objects. Archaeometry 54:893905.CrossRefGoogle Scholar
Haneca, K, Ervynck, A, Boudin, M. 2018. Radiokoolstofanalyses op crematieresten. In: Annaert, R, editor. Het vroegmiddeleeuwse grafveld van Broechem (gemeente Ranst, Provincie Antwerpen, België). Merovingian Archaeology in the Low Countries 5. Bonn: Habelt verlag. p. 217222.Google Scholar
Haneca, K, Van Acker, J, Beeckman, H. 2005. Growth trends reveal the forest structure during Roman and Medieval times in Western Europe: a comparison between archaeological and actual oak ring series (Quercus robur and Quercus petraea). Annals of Forest Science 62:797805CrossRefGoogle Scholar
Hillier, ML, Bell, LS. 2007. Differentiating human bone from animal bone: a review of histological methods. Journal of Forensic Science 52(2):249263.CrossRefGoogle ScholarPubMed
Hüls, CM, Nadeau, MJ, Grootes, PM, Erlenkeuser, H, Andersen, N. 2010. Experimental study on the origin of cremated bone apatite carbon. Radiocarbon 52(2):587599.CrossRefGoogle Scholar
Hynynen, J, Niemistö, P, Viherä-Aarnio, A, Brunner, A, Hein, S, Velling, P. 2009. Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry 83(1):103119.CrossRefGoogle Scholar
Lanting, JN, van der Plicht, J. 1998. Reservoir effects and apparent 14C-ages. Journal of Irish Archaeology 9:151–65.Google Scholar
Marguerie, D, Hunot, JY. 2007. Charcoal analysis and dendrology: data from archaeological sites in north-western France. Journal of Archaeological Science 34:14171433.CrossRefGoogle Scholar
Martiniaková, M, Grosskopf, B, Omelka, R, Vondráková, M, Bauerová, M. 2006. Differences among species in compact bone tissue microstructure of mammalian skeleton: use of a discriminant function analyses for species identification. Journal of Forensic Science 51(6):12351239.CrossRefGoogle Scholar
Martiniaková, M, Grosskopf, B, Omelka, R, Dammers, K, Vondráková, M, Bauerová, M. 2007. Histological study of compact bone tissue in some mammals: a method for species determination. International Journal of Osteoarchaeology 17(1):8290.CrossRefGoogle Scholar
McVean, DN. 1953. Alnus glutinosa (L.) Gaertn. Journal of Ecology 41(2):447466.CrossRefGoogle Scholar
Mittermeier, I. 1986. Speisebeigaben in Gräbern der Merowingerzeit, Inaugural-Dissertation zur Erlangung der Doktorwürde der Philosophischen Fakultät I der Julius-Maximilians-Universität, Würzburg.Google Scholar
Naysmith, P, Scott, EM, Cook, GT, Heinemeier, J, van der Plicht, J, Van Strydonck, M, Bronk Ramsey, C, Grootes, PM, Freeman, SPHT. 2007. A cremated bone intercomparison study. Radiocarbon 49(2):403408.CrossRefGoogle Scholar
Nor, FM, Pastor, RF, Schutkowski, H. 2015. Histological study to differentiate between human and non-human long bone. International Medical Journal 22(5):413–7.Google Scholar
Olsen, J, Heinemeier, J, Hornstrup, KM, Bennike, P, Thrane, H. 2013. “Old wood” effect in radiocarbon dating of prehistoric cremated bones? Journal of Archaeological Science 40(1):3034.CrossRefGoogle Scholar
Owsley, DW, Mires, AM, Keith, MS. 1985. Case involving differentiation of deer and human bone fragments. Journal of Forensic Science 30(2):572–8.CrossRefGoogle ScholarPubMed
Polet, C, Katzenberg, MA. 2002. Comportements alimentaires de trois populations médiévales Belges: apports de la biogéochimie isotopique. Revue belge de philologie et d’histoire 80(4):13711390.CrossRefGoogle Scholar
Price, TD, Burton, JH, Bentley, RA. 2002. The characterization of biologically available strontium isotope ratios for the study of prehistoric migration. Archaeometry 44(1):117135.CrossRefGoogle Scholar
Quintelier, K, Watzeels, S. 2018. Analysis of the human cremated remains and interpretation of the funerary rites at the Merovingian cemetery of Broechem, Antwerp (Belgium). In: Annaert, R, editor. Het vroegmiddeleeuwse grafveld van Broechem (gemeente Ranst, Provincie Antwerpen, België). Merovingian archaeology in the Low Countries 5. Bonn: Habelt verlag. p 188195.Google Scholar
Rackham, O. 1980. Ancient woodland, its history, vegetation and uses in England. Colvend: Castlepoint Press.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Ramsey, CB, Buck, CE, Cheng, H, Edwards Rl, Friedrich M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann Dl, Hogg AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Slechten, K. 2004. Namen noemen. Het CAI-thesaurusproject. In: CAI-I, De opbouw van een archeologisch beleidsinstrument. IAP-Rapporten 14, CAI-I. Brussel: IAP. p. 4954.Google Scholar
Snoeck, C, Brock, F, Schulting, RJ. 2014. Carbon exchanges between bone apatite and fuels during cremation: impact on radiocarbon dates. Radiocarbon 56(2):591602.CrossRefGoogle Scholar
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137–89.CrossRefGoogle Scholar
Urbanová, P, Novotný, V. 2005. Distinguishing between human and non-human bones: histometric method for forensic anthropology. Anthropologie XLIII(1):7785.Google Scholar
Vakkari, P. 2009. EUFORGEN Technical Guidelines for genetic conservation and use. Silver birch (Betula pendula). Rome: Bioversity International.Google Scholar
Van Strydonck, M, Boudin, M, De Mulder, G. 2009. 14C dating of cremated bones: the issue of sample contamination. Radiocarbon 51(2):553568.Google Scholar
Van Strydonck, M, Boudin, M, De Mulder, G. 2010. The carbon origin of structural carbonate in bone apatite of cremated bones. Radiocarbon 52(2):578586.CrossRefGoogle Scholar
Van Thienen, V. 2016. Abandoned, neglected and revived: aspects of Late Roman society in Northern Gaul. Ghent: Ghent University. Faculty of Arts and Philosophy.Google Scholar
Walton Rogers, P. 2018. Gender and costume in the Merovingian cemetery at Broechem, Belgium. In: Annaert, R, editor. Het vroegmiddeleeuwse grafveld van Broechem (gemeente Ranst, Provincie Antwerpen, België). Merovingian Archaeology in the Low Countries 5. Bonn: Habelt Verlag. p 132171.Google Scholar
Ward, GK, Wilson, SR. 1978. Procedures for comparing and combining radiocarbon age determinations - Critique. Archaeometry 20(1):1931.CrossRefGoogle Scholar
Wiselius, SI. 1990. Houtvademecum. Deventer: Kluwer Technische Boeken B.V.Google Scholar
Zazzo, A, Saliège, J-F, Lebon, M, Lepetz, S, Moreau, C. 2012. Radiocarbon dating of calcined bones: insights from combustion experiments under natural conditions. Radiocarbon 54(3–4):855866.CrossRefGoogle Scholar
Zazzo, A, Saliège, J-F, Person, A, Boucher, H. 2009. Radiocarbon dating of calcined bones: where does the carbon come from? Radiocarbon 51(2):601611.CrossRefGoogle Scholar
Supplementary material: File

Annaert et al. supplementary materials

Annaert et al. supplementary materials 1

Download Annaert et al. supplementary materials(File)
File 24 KB
Supplementary material: Image

Annaert et al. supplementary materials

Annaert et al. supplementary materials 2

Download Annaert et al. supplementary materials(Image)
Image 10.5 MB