Hostname: page-component-6d856f89d9-mhpxw Total loading time: 0 Render date: 2024-07-16T05:21:10.991Z Has data issue: false hasContentIssue false

Carbon Dynamics in Vertisols as Revealed by High-Resolution Sampling

Published online by Cambridge University Press:  18 July 2016

Peter Becker-Heidmann*
Affiliation:
Institut f. Bodenkunde, Allende-Platz 2, 20146 Hamburg, Germany
Olaf Andresen
Affiliation:
Institut f. Bodenkunde, Allende-Platz 2, 20146 Hamburg, Germany
Dov Kalmar
Affiliation:
The Volcani Center of Agricultural Research, Akko, Israel
Hans-Wilhelm Scharpenseel
Affiliation:
Institut f. Bodenkunde, Allende-Platz 2, 20146 Hamburg, Germany
Dan H Yaalon
Affiliation:
Institute of Earth Sciences, Hebrew University, Givat Ram Campus, Jerusalem 91904, Israel
*
Corresponding author. Email: P.Becker-Heidmann@ifb.uni-hamburg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two Vertisol soil profiles under xeric soil moisture regimes, located at Qedma and Akko, Israel, were investigated and compared to a profile under ustic moisture regime, located in Hyderabad, India. Samples were taken in complete successive 2 cm thin layers down to about 180 cm depth or more. Organic and inorganic carbon were analyzed with regard to 13C and 14C concentrations. While all soils have radiocarbon ages of several thousand years BP, the depth distributions reveal substantial differences between the soil carbon dynamics. 14C and, less pronounced, δ13C clearly reflect the pedoturbation process. Further, its strength is found to be related to mainly soil moisture regime, then clay content and land use. In one soil, a change of growing from C4 to C3 crops in the past can be concluded from the δ13C depth distribution.

Type
Articles
Copyright
Copyright © 2002 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Agassi, M, Shainberg, I, Morin, J. 1985. Infiltration and runoff in wheat fields in the semi-arid region of Israel. Geoderma 36:263–76.Google Scholar
Andresen, O. 1987. Untersuchung der Isotopenverhältnisse an kalkhaltigen tiefgründigen Vertisolen aus Israel. Diploma thesis, Hamburg. Unpublished.Google Scholar
Becker-Heidmann, P, Scharpenseel, HW. 1986. Thin layer δ13C and D14C monitoring of “lessivé” soil profiles. Radiocarbon 28(2A):3 8390.Google Scholar
Becker-Heidmann, P. 1989. Die Tiefenfunktionen der natürlichen Kohlenstoff-Isotopengehalte von vollständig dünnschichtweise beprobten Parabraunerden und ihre Relation zur Dynamik der organischen Substanz in diesen Böden. PhD thesis. Hamburger Bodenkundliche Arbeiten 13:1228.Google Scholar
Becker-Heidmann, P, Scharpenseel, HW, Wiechmann, H. 1996. Hamburg radiocarbon thin layer soils database. Radiocarbon 38(2):295345.Google Scholar
Becker-Heidmann, P. 1996. Requirements for an international radiocarbon soils database. Radiocarbon 38(2):177–80.Google Scholar
Blackburn, G, Sleeman, J, Scharpenseel, HW. 1979. Radiocarbon measurements and soil micromorphology as guides to the formation of gilgai at Kaniva, Victoria. Aust. J. Soil Res. 19:115.Google Scholar
Dudal, R, Eswaran, H. 1988. Distribution, properties and classification of Vertisols. In: Wilding, LP, Puentes, R, editors. Vertisols: their distribution, properties, classification and management. College Station, Texas: Texas A&M University Printing Center.Google Scholar
Eswaran, H, Beinroth, FH, Reich, PF, Quandt, LA. 1999. Vertisols: their properties, classification, distribution and management. Washington, DC: USDA Natural Resources Conservation Service. Online version: http://www.nhq.nrcs.usda.gov/WSR/Vertisols/vert-start.html.Google Scholar
[FAO] Food and Agriculture Organization of the United Nations. 1998. World Reference Base for Soil Resources. Rome.Google Scholar
Kovda, I, Lynn, W, Williams, D, Chichagova, OA. 2001. Radiocarbon age of Vertisols and its interpretation using data on Gilgai complex in the North Caucasus. Radiocarbon 43(2B):603–9.CrossRefGoogle Scholar
Orni, E, Yaalon, DH. 1966. Boden. Seine Erhaltung und Urbarmachung. Schriftenreihe Israel. Informations-abteilung des Außenministeriums, Jerusalem.Google Scholar
Scharpenseel, HW, Schiffmann, H, Hintze, B. 1984. Hamburg University radiocarbon dates III. Radiocarbon 26(2):196205.CrossRefGoogle Scholar
Scharpenseel, HW, Freytag, J, Becker-Heidmann, P. 1986. C-14-Altersbestimmung und δ13C-Messungen an Vertisolen, unter besonderer Berücksichtigung der Geziraböden des Sudan. Z. Pflanzenernaehr. Bodenkd. 149:277–89.Google Scholar
Scharpenseel, HW, Becker-Heidmann, P. 1992. Twenty-five years of radiocarbon dating soils; paradigm of erring and learning. Radiocarbon 34(3):541–9.CrossRefGoogle Scholar
Soil Survey Staff. 1990. Keys to soil taxonomy. SMSS technical monograph no. 6, Blacksburg, Virginia.Google Scholar
Soil Survey Staff. 1998. Keys to soil taxonomy. Natural Resources Conservation Service, US Department of Agriculture. 8th edition. 326 p.Google Scholar
Stuiver, M, Polach, H. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Yaalon, DH, Kalmar, D. 1972. Vertical movement in an undisturbed soil: continuos measurement of swelling and shrinkage with a sensitive apparatus. Geoderma 8:231–40.Google Scholar
Yaalon, DH, Kalmar, D. 1978. Dynamics of cracking and swelling clay soils: displacement of skeletal grains, optimum depth of slickensides, and rate of intra-pedonic turbation. Earth Surface Processes 3:3142.Google Scholar