Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-12T21:20:24.706Z Has data issue: false hasContentIssue false

Dating of Cremated Bones

Published online by Cambridge University Press:  18 July 2016

J N Lanting
Affiliation:
Groningen Institute of Archaeology, University of Groningen, Poststraat 6, 9712 ER Groningen, the Netherlands
A T Aerts-Bijma
Affiliation:
Centre for Isotope Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
J van der Plicht*
Affiliation:
Centre for Isotope Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
*
Corresponding author. Email: plicht@phys.rug.nl.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

When dating unburnt bone, bone collagen, the organic fraction of the bone, is used. Collagen does not survive the heat of the cremation pyre, so dating of cremated bone has been considered impossible. Structural carbonate in the mineral fraction of the bone, however, survives the cremation process. We developed a method of dating cremated bone by accelerator mass spectrometry (AMS), using this carbonate fraction. Here we present results for a variety of prehistoric sites and ages, showing a remarkable success rate for this method.

Type
I. Becoming Better
Copyright
Copyright © The Arizona Board of Regents on behalf of the University of Arizona 

References

Ambrose, SE, Norr, L. 1993. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In: Lambert, JB, Grupe, G, editors. Prehistoric human bone. Archaeology at the molecular level. Berlin: Springer Verlag. p 137.Google Scholar
Gottdang, A, Mous, DJW, van der Plicht, J. 1995. The HVEE 14C system at Groningen. Radiocarbon 37(2): 649–56.CrossRefGoogle Scholar
Hedges, REM, Thorp, JA, Tuross, NC. 1995. Is toothenamel carbonate a suitable material for radiocarbon dating? Radiocarbon 37(2):285–90.CrossRefGoogle Scholar
Lanting, JN, Brindley, AL. 1998. Dating cremated bone: the dawn of a new era. Journal of Irish Archaeology 9: 1–7.Google Scholar
Lanting, JN, van der Plicht, J. 1998. Reservoir effects and apparent 14C ages. Journal of Irish Archaeology 9: 151–65.Google Scholar
Lee-Thorp, JA, Sealy, JC, van der Merwe, NJ. 1989. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. Journal of Archeological Science 16:585–99.CrossRefGoogle Scholar
Lee-Thorp, JA, van der Merwe, NJ. 1991. Aspects of the chemistry of modern and fossil biological apatites. Journal of Archeological Science 18:43354.CrossRefGoogle Scholar
Person, A, Saliège, J-F, Gérard, , Paris, F. 1998. Utilisation d'un indice caractéristique de la diagenèsede la fraction minéral d'ossements archéologiques en milieu désertique pour discuter de la fiabilité de ces matériaux comme support de datation par le radiocarbone, application à deux nécropoles néolithique de l'Aïr (Niger). Pré-actes du 3ème Congrès International 14C et Archéologie, Lyon 1998. p 77–8.Google Scholar
Saliège, J-F, Person, A, Paris, F. 1998. Datation du carbonate-hydroxylapatite d'ossements Holocènes du Sahel (Mali, Mauritanie, Niger). Pré-actes du 3ème Congrès International 14C et Archéologie, Lyon 1998. p 172–3.Google Scholar
Shipman, P, Foster, GF, Schoeninger, M. 1984. Burnt bones and teeth: an experimental study of colour, morphology, crystal structure and shrinkage. Journal of Archaeological Science 11:307–25.CrossRefGoogle Scholar
Stiner, MC, Kuhn, SL, Weiner, S, Bar-Yosef, O. 1995. Differential burning, recrystallization and fragmentation of archaeological bone. Journal of Archaeological Science 22:223327.CrossRefGoogle Scholar