Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T06:25:29.539Z Has data issue: false hasContentIssue false

INTCAL98 Radiocarbon Age Calibration, 24,000–0 cal BP

Published online by Cambridge University Press:  18 July 2016

Minze Stuiver
Affiliation:
Quaternary Isotope Laboratory, University of Washington, Seattle, Washington 98195-1360 USA
Paula J. Reimer
Affiliation:
Quaternary Isotope Laboratory, University of Washington, Seattle, Washington 98195-1360 USA
Edouard Bard
Affiliation:
CEREGE, Europôle de l'Arbois, B.P. 80, 13545 Aix-en-Provence Cedex 4, France
J. Warren Beck
Affiliation:
Physics Department, University of Arizona, Tucson, Arizona 85721-0081 USA
G. S. Burr
Affiliation:
Physics Department, University of Arizona, Tucson, Arizona 85721-0081 USA
Konrad A. Hughen
Affiliation:
Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138 USA
Bernd Kromer
Affiliation:
Heidelberger Akademie der Wissenschaften, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
Gerry McCormac
Affiliation:
Radiocarbon Laboratory, The Queen's University, Belfast BT7 1NN, Northern Ireland
Johannes Van Der Plicht
Affiliation:
Centrum voor Isotopen Onderzoek, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Marco Spurk
Affiliation:
Universität Hohenheim, Institut für Botanik–210, D-70593 Stuttgart, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The focus of this paper is the conversion of radiocarbon ages to calibrated (cal) ages for the interval 24,000–0 cal BP (Before Present, 0 cal BP = AD 1950), based upon a sample set of dendrochronologically dated tree rings, uranium-thorium dated corals, and varve-counted marine sediment. The 14C age–cal age information, produced by many laboratories, is converted to Δ14C profiles and calibration curves, for the atmosphere as well as the oceans. We discuss offsets in measured l4C ages and the errors therein, regional 14C age differences, tree–coral 14C age comparisons and the time dependence of marine reservoir ages, and evaluate decadal vs. single-year 14C results. Changes in oceanic deepwater circulation, especially for the 16,000–11,000 cal BP interval, are reflected in the Δ14C values of INTCAL98.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Adkins, J. F., Cheng, H., Boyle, E. A., Druffel, E. R. M. and Edwards, R. L. 1998 Deep-sea coral evidence for rapid change in ventilation of the deep North Atlantic 15,400 years ago. Science 280: 725728.CrossRefGoogle Scholar
Alley, R. B., Shuman, C. A., Meese, D. A., Gow, A. J., Taylor, K. C., Cuffey, K. M., Fitzpatrick, J. J., Grootes, P. M., Zielinski, G. A., Ram, M., Spinelli, G. and Elder, B. 1997 Visual-stratigraphic dating of the GISP2 core: Basis, reproducibility, and application. Journal of Geophysical Research 102(C12): 26,370–26,381.CrossRefGoogle Scholar
Bard, E. 1988 Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: Paleoceanographic implications. Paleoceanography 3: 635645.CrossRefGoogle Scholar
Bard, E., Arnold, M., Hamelin, B., Tisnerat-Laborde, N. and Cabioch, G. 1998 Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: An updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon, this issue.CrossRefGoogle Scholar
Bard, E., Arnold, M., Mangerud, M., Paterne, M., Labeyrie, L., Duprat, J., Mélières, M. A., Sonstegaard, E. and Duplessy, J. C. 1994 The North Atlantic atmosphere-sea surface 14C gradient during the Younger Dryas climatic event. Earth and Planetary Science Letters 126: 275287.CrossRefGoogle Scholar
Bard, E., Hamelin, B., Fairbanks, R. G. and Zindler, A. 1990 Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345: 405410.CrossRefGoogle Scholar
Braziunas, T. F., Fung, I. E. and Stuiver, M. 1995 The preindustrial atmospheric 14CO2 latitudinal gradient as related to exchanges among atmospheric, oceanic, and terrestrial reservoirs. Global Biogeochemical Cycles 9:565–584.CrossRefGoogle Scholar
Broecker, W. S. 1997 Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance? Science 278: 15821588.CrossRefGoogle ScholarPubMed
Broecker, W. S. 1998 Paleocean circulation during the last glaciation: A bipolar seesaw? Paleoceanography 13: 119121.CrossRefGoogle Scholar
Bronk Ramsey, C. 1994 Analysis of chronological information and radiocarbon calibration: The program OxCal. Archaeological and Computing Newsletter 41: 1116.Google Scholar
Burr, G. S., Beck, J. W., Taylor, F. W., Récy, J., Edwards, R. L. Cabioch, G., Corrège, T., Donahue, D. J. and O'Malley, J. M. 1998 A high-resolution radiocarbon calibration between 11,700 and 12,400 calendar years BP derived from 230Th ages of corals from Espiritu Santo Island, Vanuatu. Radiocarbon, this issue.CrossRefGoogle Scholar
Damon, P. E. 1995 A note concerning “Location-dependent differences in the 14C content of wood” by McCormac et al . In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(2): 829830.CrossRefGoogle Scholar
Damon, P. E., Burr, G., Peristykh, A. N., Jacoby, G. C. and D'Arrigo, R. D. 1996 Regional radiocarbon effect due to thawing of frozen earth. Radiocarbon 38(3): 597602.CrossRefGoogle Scholar
Edwards, R. L., Beck, J. W., Burr, G. S., Donahue, D. J., Chappell, J. M. A., Bloom, A. L., Druffel, E. R. M. and Taylor, F. W. 1993 A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260: 962968.CrossRefGoogle ScholarPubMed
Hughen, K. A., Overpeck, J. T., Lehman, S. J., Kashgarian, M., Southon, J., Peterson, L. C., Alley, R. and Sigman, D. M. 1998 Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391:65–68.CrossRefGoogle Scholar
Kitagawa, H. and van der Plicht, J. 1998 Atmospheric radiocarbon calibration to 45,000 yr B.P.: Late Glacial fluctuations and cosmogenic isotope production. Science 279: 11871190.CrossRefGoogle Scholar
Kromer, B., Rhein, M., Bruns, M., Schoch-Fischer, H., Munnich, K. O., Stuiver, M. and Becker, B. 1986 Radiocarbon calibration data for the 6th to the 8th millennia BC. In Stuiver, M. and Kra, R., eds., Calibration Issue. Radiocarbon 28(2B): 954–960.CrossRefGoogle Scholar
Kromer, B. and Spurk, M. 1998 Revision and tentative extension of the tree-ring based 14C calibration, 9200–11,855 cal BP. Radiocarbon, this issue.CrossRefGoogle Scholar
Lal, D. 1985 Carbon cycle variations during the past 50.000 years: Atmospheric 14C/12C ratio as an isotopic indicator. In Sundquist, E. T. and Broecker, W. S., eds., The Carbon Cycle and Atmospheric CO 2 : Natural Variations, Archean to Present. Geophysical Monograph 32. Washington, D.C., American Geophysical Union: 221–233.Google Scholar
Mangini, A., Lomitschka, M., Eichstädter, R., Frank, N. and Vogler, S. 1998 Coral provides way to age deep water. Nature 392: 347348.CrossRefGoogle Scholar
McCormac, F. G., Baillie, M. G. L., Pilcher, J. R. and Kalin, R. M. 1995 Location-dependent differences in the 14C content of wood. In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(2): 395407.CrossRefGoogle Scholar
McCormac, F. G., Hogg, A. G., Higham, T. F. G., Baillie, M. G. L., Palmer, J. G., Xiong, L., Pilcher, J. R., Brown, D. and Hoper, S. T. 1998a Variations of radiocarbon in tree rings: Southern Hemisphere offset preliminary results. Radiocarbon, this issue.CrossRefGoogle Scholar
McCormac, F. G., Hogg, A. G., Higham, T. F. G., Lynch-Stieglitz, J., Broecker, W. S., Baillie, M. G. L., Palmer, J., Xiong, L., Pilcher, J. R., Brown, D. and Hoper, S.T. 1998b Temporal variation in the interhemispheric 14C offset. Geophysical Research Letters 25: 13211324.CrossRefGoogle Scholar
Pearson, G. W., Becker, B. and Qua, F. 1993 High-precision 14C measurement of German and Irish oaks to show the natural 14C variations from 7890 to 5000 BC. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 93104.CrossRefGoogle Scholar
Pearson, G. W. and Stuiver, M. 1993 High-precision bidecadal calibration of the radiocarbon time scale, 500–2500 BC. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 2533.CrossRefGoogle Scholar
Pilcher, J. R., Baillie, M. G. L., Schmidt, B. and Becker, B. 1984 A 7,272-year tree-ring chronology for Western Europe. Nature 312: 150152.CrossRefGoogle Scholar
Reinsch, C. H. 1967 Smoothing by spline functions. Numerische Mathematik 10: 177183.CrossRefGoogle Scholar
Spurk, M., Friedrich, M., Hofmann, J., Remmele, S., Frenzel, B., Leuschner, H. H. and Kromer, B. 1998 Revisions and extension of the Hohenheim oak and pine chronologies: New evidence about the timing of the Younger Dryas / Preboreal transition. Radiocarbon, this issue.CrossRefGoogle Scholar
Stuiver, M. 1982 A high-precision calibration of the AD radiocarbon time scale. Radiocarbon 24(1): 126.CrossRefGoogle Scholar
Stuiver, M. and Becker, B. 1986 High-precision decadal calibration of the radiocarbon time scale, AD 1950–2500 BC. In Stuiver, M. and Kra, R., eds., Calibration Issue. Radiocarbon 28(2B): 863–910.Google Scholar
Stuiver, M. and Becker, B. 1993 High-precision decadal calibration of the radiocarbon time scale, AD 1950–6000 BC. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 3565.CrossRefGoogle Scholar
Stuiver, M. and Braziunas, T. F. 1993 Sun, ocean, climate and atmospheric 14CO2: An evaluation of causal and spectral relationships. The Holocene 3: 289305.CrossRefGoogle Scholar
Stuiver, M. and Braziunas, T. F. 1998 Anthropogenic and solar components of hemispheric 14C. Geophysical Research Letters 25: 329332.Google Scholar
Stuiver, M., Braziunas, T. F., Grootes, P. M. and Zielinski, G. A. 1997 Is there evidence for solar forcing of climate in the GISP2 oxygen isotope record? Quaternary Research 48: 259266.CrossRefGoogle Scholar
Stuiver, M., Grootes, P. M. and Braziunas, T. F. 1995 The GISP2 δ18O climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes. Quaternary Research 44: 341354.CrossRefGoogle Scholar
Stuiver, M. and Kra, R., eds. 1986 Calibration issue. Radiocarbon 28(2B): 805–1030.Google Scholar
Stuiver, M., Long, A. and Kra, R. S., eds. 1993 Calibration 1993. Radiocarbon 35(1): 1244.CrossRefGoogle Scholar
Stuiver, M. and Östlund, H. G. 1980 GEOSECS Atlantic radiocarbon. Radiocarbon 22(1): 124.CrossRefGoogle Scholar
Stuiver, M. and Pearson, G. W. 1993 High-precision bidecadal calibration of the radiocarbon time scale, AD 1950–500 BC and 2500–6000 BC. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 123.CrossRefGoogle Scholar
Stuiver, M. and Polach, H. A. 1977 Discussion: Reporting of 14C data. Radiocarbon 19(3): 355363.CrossRefGoogle Scholar
Stuiver, M. and Quay, P. D. 1981 Atmospheric 14C changes resulting from fossil fuel CO2 release and cosmic ray flux variability. Earth and Planetary Science Letters 53: 349362.CrossRefGoogle Scholar
Stuiver, M. and Reimer, P. J. 1993 Extended 14C data base and revised CALIB 3.0 14C age calibration program. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 215230.CrossRefGoogle Scholar
Stuiver, M., Reimer, P. J. and Braziunas, T. F. 1998 High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon, this issue.CrossRefGoogle Scholar
Toggweiler, J. R., Dixon, K. and Bryan, K. 1989 Simulations of radiocarbon in a coarse-resolution world ocean model 1. Steady-state prebomb distributions. Journal of Geophysical Research 94: 82178242.CrossRefGoogle Scholar
van der Plicht, J. 1993 The Groningen radiocarbon calibration program. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 231237.CrossRefGoogle Scholar
Vogel, J. C., Fuls, A., Visser, E. and Becker, B. 1993 Pretoria calibration curve for short-lived samples, 1930–3350 BC. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 7385.CrossRefGoogle Scholar
Vogel, J. C. and van der Plicht, J. 1993 Calibration curve for short-lived samples, 1900–3900 BC. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 8791.CrossRefGoogle Scholar