Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-07T23:20:29.455Z Has data issue: false hasContentIssue false

MARINE BIOGENIC CARBONATES AND RADIOCARBON—A RETROSPECTIVE ON SHELLS AND CORALS WITH AN OUTLOOK ON CHALLENGES AND OPPORTUNITIES

Published online by Cambridge University Press:  02 November 2021

Susanne Lindauer*
Affiliation:
Curt-Engelhorn-Centre Archaeometry, Mannheim, Germany
Carla S Hadden
Affiliation:
Center for Applied Isotope Studies, University of Georgia, Athens, GA, USA
Kita Macario
Affiliation:
Instituto de Física, Universidade Federal Fluminense, Niterói, Brazil
Thomas P Guilderson
Affiliation:
Ocean Sciences Department, University of California, Santa Cruz, CA, USA
*
*Corresponding author. Email: susanne.lindauer@ceza.de

Abstract

Many organisms living in the ocean create tests, shells, or related physical structures of calcium carbonate (CaCO3). As this is most often from dissolved inorganic carbon, using organisms that create calcium carbonate structures for climate research and dating purposes requires knowledge of the origin of carbon that is incorporated. Here, we give a short overview of research on marine carbonates over the last 60 years, especially that based on shell and coral samples. Both shells and corals exhibit annual growth patterns, like trees, and therefore offer possibilities for yearly resolution of past radiocarbon (14C) variations. We concentrate on their evolution in 14C dating including difficulties in determining reservoir ages as well as the possibilities they offer for archaeological dating, oceanography, calibration purposes as well as environmental research in general.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

All authors contributed equally to this retrospective.

References

REFERENCES

Adkins, JF, Griffin, S, Kashgarian, M, Cheng, H, Druffel, ERM, Boyle, EA, Edwards, RL, Shen, C-C. 2002. Radiocarbon dating of deep-sea corals. Radiocarbon (44):567–580.CrossRefGoogle Scholar
Alves, E, Macario, K, Souza, R, Aguilera, O, Goulart, AC, Scheel-Ybert, R, Bachelet, C, Carvalho, C, Oliveira, F, Douka, K. 2015. Marine reservoir corrections on the southeastern coast of Brazil: paired samples from the Saquarema shellmound. Radiocarbon 57(4):517525.CrossRefGoogle Scholar
Alves, EQ, Macario, K, Ascough, P, Bronk Ramsey, C. 2018. The worldwide marine radiocarbon reservoir effect: definitions, mechanisms, prospects. Reviews of Geophysics 56(1):278305.CrossRefGoogle Scholar
Anderson, EC, Libby, WF. 1951. World-wide distribution of natural radiocarbon. Physical Review 81(1):6469. doi: 10.1103/PhysRev.81.64.CrossRefGoogle Scholar
Arnold, JR, Libby, WF. 1949. Age determinations by radiocarbon content: checks with samples of known age. Science 23:678680.CrossRefGoogle Scholar
Austin, WEN, Bard, E, Hunt, JB, Kroon, D, Peacock, JD. 1995. The 14C age of the Icelandic Ved Ash: implications for Younger Dryas marine reservoir age corrections. Radiocarbon 37(1):5362.CrossRefGoogle Scholar
Bard, E, Arnold, M, Fairbanks, RG, Hamelin, B. 1993. 230Th-234U and 14C ages obtained by mass spectrometry on corals. Radiocarbon 35:191199.CrossRefGoogle Scholar
Bard, E, Hamelin, B, Fairbanks, RG, Zindler, A. 1990. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345:405410.CrossRefGoogle Scholar
Berger, R, Horney, AG, Libby, WF. 1964. Radiocarbon dating of bone and shell from their organic components. Science 144(3621):9951001. doi: 10.1126/science.144.3621.995.CrossRefGoogle ScholarPubMed
Bien, GS, Rakestraw, NW, Suess, HE. 1963. Radiocarbon dating of deep water of the Pacific and Indian Oceans. Bid. Inst. Octkznanogr. Monaco 61(1278):116.Google Scholar
Blau, M, Deevey, ES, Gross, MS. 1953. Yale Natural Radiocarbon Measurements, I. Pyramid Valley, New Zealand and its problems. Science 118(3053):16.CrossRefGoogle ScholarPubMed
Brock, F, Higham, T, Ditchfield, P, Brock Ramsey, C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103112.CrossRefGoogle Scholar
Broecker, WS. 2009. The mysterious 14C decline. Radiocarbon 51(1):109119.CrossRefGoogle Scholar
Broecker, WS, Gerard, R, Ewing, M, Heezen, BC. 1960: Natural radiocarbon in the Atlantic Ocean. J. Geophysical Research 65:29032931.Google Scholar
Broecker, WS, Mix, A, Andree, M, Oeschger, H. 1984. Radiocarbon measurements on coexisting benthic and planktic foraminifera shells: potential for reconstructing ocean ventilation times over the past 20 000 years. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 5(2):331339.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesisan analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Bronk Ramsey, C, Lee, S. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55(2–3):720730.CrossRefGoogle Scholar
Burke, A, Robinson, L. 2012. The Southern Ocean’s role in carbon exchange during the last deglaciation. Science 335:557561.CrossRefGoogle ScholarPubMed
Butler, PG, Scourse, JD, Richardson, CA, Wanamaker, AD, Bryant, CL, Bennell, JD. 2009. Continuous marine radiocarbon reservoir calibration and the 13C Suess effect in the Irish Sea: results from the first multi-centennial shell-based marine master chronology. Earth and Planetary Science Letters 279(3–4):230241.CrossRefGoogle Scholar
Butzin, M, Heaton, TJ, Köhler, P, Lohmann, G. 2020. A short note on marine reservoir age simulations used in IntCal20. Radiocarbon 62(4):865871.CrossRefGoogle Scholar
Carriker, MR, Palmer, RE, Prezant, RS. 1980. Functional ultramorphology of the dissoconch valves of oyster Crassostrea virginica. Proceedings of the National Shellfisheries Association 70:139–82.Google Scholar
Carvalho, C, Macario, K, Oliveira de, MI, Oliveira, F, Chanca, I, Alves, E, Souza, R, Aguilera, O, Douka, K. 2015. Potential Use of Archaeological Snail Shells for the Calculation of Local Marine Reservoir Effect. Radiocarbon 57(3):459467.CrossRefGoogle Scholar
Cook, GT, Ascough, PL, Bonsall, C, Hamilton, WD, Russell, N, Sayle, KL, Scott, EM, Bownes, JM. 2015. Best practice methodology for 14C calibration of marine and mixed terrestrial/marine samples. Quaternary Geochronology 27:164171.CrossRefGoogle Scholar
Culleton, BJ, Kennett, DJ, Ingram, BL, Erlandson, JM, Southon, JR. 2006. Intrashell radiocarbon variability in marine mollusks. Radiocarbon 48(3):387400.CrossRefGoogle Scholar
Damon, PE, Long, A, Grey, DC. 1966. Fluctuations of atmospheric 14C during the last six millennia. J. Geophysical Research 71:10551063.CrossRefGoogle Scholar
de Vries, H. 1958. Variation in the concentration of radiocarbon with time and location on earth: Koninkl Nederlandse Akad Wetensch Proc, Series B 61:94–102.Google Scholar
Deo, JN, Stone, JO, Stein, JK. 2004. Building confidence in shell: variations in the marine radiocarbon reservoir correction for the Northwest Coast over the past 3,000 years. American Antiquity 69(4):771786.CrossRefGoogle Scholar
Douka, K, Hedges, RE, Higham, TF. 2010. Improved AMS 14C dating of shell carbonates using high-precision X-ray diffraction and a novel density separation protocol (CarDS). Radiocarbon 52(2):735751.CrossRefGoogle Scholar
Druffel, E, Linick, TW. 1978. Radiocarbon in annual coral rings of Florida. Geophysical Research Letters 5:913916.CrossRefGoogle Scholar
Druffel, ERM, Griffin, S. 2008. Daily variability of dissolved inorganic radiocarbon at three sites in the surface ocean. Marine Chemistry 110:185189.CrossRefGoogle Scholar
Druffel, ERM, Griffin, S, Vetter, D, Dunbar, RB, Mucciarone, DA. 2014. Identification of frequent La Niña events during the early 1800s in the east equatorial Pacific. Geophysical Research Letter 42:15121519.CrossRefGoogle Scholar
Duplessy, J-C, Arnold, M, Bard, E, Labeyrie, L, Duprat, J, Moyes, J. 1992. Glacial-to-interglacial changes in ocean circulation. In: Radiocarbon after four decades. Springer. p. 6274.CrossRefGoogle Scholar
Durand, N, Deschamps, P, Bard, E, Hamelin, B, Camoin, G, Thomas, AL, Henderson, GM, Yokoyama, Y, Matsuzaki, H. 2013. Comparison of 14C and U-Th ages in corals from IODP# 310 cores offshore Tahiti. Radiocarbon 55(4):19471974.CrossRefGoogle Scholar
Edwards, RL, Chen, JH, Wasserburg, GJ. 1987. U-238, U-234, Th-230, Th-232 systematics and the precise measurement of time over the past 500,000 years. Earth and Planetary Science Letters 81:175192.CrossRefGoogle Scholar
Fairbanks, RG. 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637642.CrossRefGoogle Scholar
Fallon, SJ, Guilderson, TP. 2008. Surface water processes in the Indonesian throughflow as documented by a high-resolution coral Δ14C record. J. Geophysical Research: Oceans 113:C09001.CrossRefGoogle Scholar
Fallon, SJ, Norman, R. 2012. Bomb radiocarbon at the source: coral Δ14C from Enewetak Atoll. Abstract S10-O-02. 21st International Radiocarbon Conference, Paris France, July 9–13.Google Scholar
Fine, RA, Maillet, KA, Sullivan, KF, Willey, D. 2001. Circulation and ventilation flux of the Pacific Ocean. J. Geophysical Research: Oceans 106:22,159–22,178.CrossRefGoogle Scholar
Friedman, GM. 1959. Identification of carbonate minerals by staining methods. Journal of Sedimentary Research 29(1):8797.Google Scholar
Fyfe, WS, Bischoff, JL. 1965. The calcite-aragonite problem. In: Dolomitization and limestone diagenesis: a symposium. Society of Economic Palaeontologists and Mineralogists 13. 180 p.Google Scholar
Goodkin, N, Switzer, A, McCorry, D, De Vantier, L, True, JD, Hughen, KA, Yang, TT. 2011. Coral communities of Hong Kong: long-lived corals in a marginal reef environment. Marine Ecology Progress Series 426:185196.CrossRefGoogle Scholar
Guilderson, TP, Schrag, DP. 1998. Abrupt shift in subsurface temperatures in the tropical Pacific associated with changes in El Niño. Science 281:240243.CrossRefGoogle ScholarPubMed
Guilderson, TP, Schrag, DP, Kashgarian, M, Southon, J. 1998. Radiocarbon variability in the western equatorial Pacific inferred from a high-resolution coral record from Nauru Island. J. Geophysical Research: Oceans 103:24,641–24,650.CrossRefGoogle Scholar
Guilderson, TP, Schrag, DP, Druffel, ERM, Reimer, RW. 2021. Postbomb subtropical North Pacific surface water radiocarbon history. J. Geophysical Research: Oceans 126:e2020JC016881.Google Scholar
Hadden, CS, Cherkinsky, A. 2015. Spatiotemporal variability in ΔR in the Northern Gulf of Mexico, USA. Radiocarbon 59(2):343353.CrossRefGoogle Scholar
Hadden, CS, Cherkinsky, A. 2017. Carbon reservoir effects in Eastern Oyster from Apalachicola Bay, USA. Radiocarbon 59(5):14971506.CrossRefGoogle Scholar
Hadden, CS, Loftis, KM, Cherkinsky, A. 2018. Carbon Isotopes (δ13C and Δ14C) in shell carbonate, conchiolin, soft tissues in Eastern Oyster (Crassostrea virginica). Radiocarbon 60(4):11251137.CrossRefGoogle Scholar
Hadden, CS, Loftis, KM, Cherkinsky, A, Ritchison, BT, Lulewicz, IH, Thompson, V. 2019. Radiocarbon in marsh periwinkle (Littorina irrorata) conchiolin: applications for coastal archaeology. Radiocarbon 61(5):14891500 CrossRefGoogle Scholar
Hadden, CS, Schwadron, M. 2019. Marine reservoir effects in eastern oyster (Crassostrea virginica) from southwestern Florida, USA. Radiocarbon 61(5):15011510.CrossRefGoogle Scholar
Heaton, TJ, Köhler, P, Butzin, M, Bard, E, Reimer, RW, Austin, WEN, Bronk Ramsey, C, Grootes, PM, Hughen, KA, Kromer, B, Reimer, PJ, Adkins, J, Burke, A, Cook, MS, Olsen, J, Skinner, LC. 2020. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62:779820.CrossRefGoogle Scholar
Hughen, KA, Baillie, MG, Bard, E, Beck, JW, Bertrand, CJ, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL. 2004. Marine04 marine radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):10591086.CrossRefGoogle Scholar
Keigwin, LD, Guilderson, TP. 2009. Bioturbation artifacts in zero-age sediments. Paleoceanography 24: PA4212. doi: 10.1029/2008PA001727.CrossRefGoogle Scholar
Knutson, D and Buddemeier, R. 1973. Radiocarbon contamination of the marine environment. Vienna: International Atomic Energy Agency. 735 p.Google Scholar
Kulp, JL, Tryon, LE, Eckelman, WR, Snell, WA. 1952. Lamont natural radiocarbon measurements, II. Science 116(3016):409414.CrossRefGoogle ScholarPubMed
Lindauer, S. 2019. Radiocarbon reservoir effects on shells from SE Arabia in the context of paleoenvironmental studies [PhD doctorial thesis]. Technical University Darmstadt.Google Scholar
Lindauer, S, Friedrich, R, can Gyseghem, R, Hinderer, M. 2019. Highly-resolved radiocarbon measurements on shells from Kalba, UAE, using carbonate handling system and gas ion source with MICADAS. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 455:146153.CrossRefGoogle Scholar
Lindauer, S, Marali, S, Schöne, BR, Uerpmann, H-P, Kromer, B, Hinderer, M. 2016. Investigating the local reservoir age and stable isotopes of shells from Southeast Arabia. Radiocarbon 59(2):355372.CrossRefGoogle Scholar
Lindauer, S, Milano, S, Steinhof, A, Hinderer, M. 2018. Heating mollusc shells—a radiocarbon and microstructure perspective from archaeological shells recovered from Kalba, Sharjah Emirate, UAE. Journal of Archaeological Science: Reports 21:528537.Google Scholar
Lindauer, S, Santos, GM, Steinhof, A, Yousif, E, Phillips, C, Jasim, SA, Hinderer, M. 2017. The local marine reservoir effect at Kalba (UAE) between the Neolithic and Bronze Age: an indicator of sea level and climate changes. Quaternary Geochronology 42(Supplement C): 105116.CrossRefGoogle Scholar
Loftus, E, Rogers, K, Lee-Thorp, J. 2015. A simple method to establish calcite: aragonite ratios in archaeological mollusc shells. Journal of Quaternary Science 30(8):731735.CrossRefGoogle Scholar
Macario, KD, Alves, E, Belém, AL, Aguilera, O, Bertucci, T, Tenório, MC, Oliveira, FM, Chanca, IS, Carvalho, C, Souza, R, Scheel-Ybert, R, Nascimento, GS, Dias, F, Caon, J. 2018. The Marine reservoir effect on the coast of Rio de Janeiro: deriving ΔR values from fish otoliths and mollusk shells. Radiocarbon 60(4):11511168.CrossRefGoogle Scholar
Macario, KD, Alves, EQ, Carvalho, C, Oliveira, FM, Bronk Ramsey, C, Chivall, D, Souza, R, Simone, LRL, Cavallari, DC. 2016. The use of the terrestrial snails of the genera Megalobulimus and Thaumastus as representatives of the atmospheric carbon reservoir. Scientific Reports 6(1):17.CrossRefGoogle ScholarPubMed
Macario, KD, Alves, EQ, Chanca, IS, Oliveira, FM, Carvalho, C, Souza, R, Aguilera, O, Tenório, MC, Rapagna, L, Douka, K, Silva, E. 2016. The Usiminas shellmound on the Cabo Frio island: marine reservoir effect in an upwelling region on the coast of Brazil. Quaternary Geochronology 35:3642.CrossRefGoogle Scholar
Macario, KD, Souza, RCCL, Aguilera, OA, Carvalho, C, Oliveira, FM, Alves, EQ, Chanca, IS, Silva, EP, Douka, K, Decco, J, Trindade, DC. 2015. Marine reservoir effect on the Southeastern coast of Brazil: results from the Tarioba shellmound paired samples. Journal of Environmental Radioactivity 143:1419.CrossRefGoogle ScholarPubMed
Milano, S, Lindauer, S, Prendergast, AL, Hill, EA, Hunt, CO, Barker, G, Schöne, BR, 2018. Mollusk carbonate thermal behaviour and its implications in understanding prehistoric fire events in shell middens. Journal of Archaeological Science: Reports 20:443457.Google Scholar
Mangerud, J. 1972. Radiocarbon dating of marine shells, including a discussion of apparent age of Recent shells from Norway. Boreas 1(2):143172.CrossRefGoogle Scholar
McConnaughey, TA, Gillikin, DP. 2008. Carbon isotopes in mollusk shell carbonates. Geo-Marine Letters 28(5):287299.CrossRefGoogle Scholar
McDuffee, K, Druffel, ERM. 2007. Daily variability of dissolved inorganic radiocarbon in Sargasso Sea surface water. Marine Chemistry 106:510515.CrossRefGoogle Scholar
Moreira, VN, Macario, KD, Guimarães, RB, Dias, FF, Araujo, JC, Jesus, P, Douka, K. 2020. Aragonite fraction dating of vermetids in the context of Paleo sea-level curves reconstruction. Radiocarbon 62(2):335348.CrossRefGoogle Scholar
Nelson, DE, Korteling, RG, Stott, WR. 1977. Carbon-14: direct detection at natural concentrations. Science 198:507508.CrossRefGoogle ScholarPubMed
Nozaki, Y, Rye, DM, Turekian, KK, Dodge, RE. 1978. A 200-year record of carbon-13 and carbon-14 variations in a Bermuda coral. Geophysical Research Letters 5:825828.CrossRefGoogle Scholar
Olsson, IU. 2009. Radiocarbon dating history: early days, questions, problems met. Radiocarbon 51(1):143.CrossRefGoogle Scholar
Peng, T-H, Broecker, WS. 1984. The impacts of bioturbation on the age difference between benthic and planktonic foraminifera in deep sea sediments. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 5(2):346352.CrossRefGoogle Scholar
Qiu, B, Mao, M, Kashino, Y. 1999. Intraseasonal variability in the Indo-Pacific throughflow and the regions surrounding the Indonesian Seas. J. Physical Oceanography 29:15991618.2.0.CO;2>CrossRefGoogle Scholar
Ramos, RD, Goodkin, NF, Druffel, ERM, Fan, TY, Siringan, FP. 2019. Interannual coral Δ14C records of surface water exchange across the Luzon Strait. J. Geophysical Research: Oceans 124:491505.Google Scholar
Reimer, PJ. 2021. Evolution of radiocarbon calibration. Radiocarbon. doi: 10.1017/RDC.2021.62.CrossRefGoogle Scholar
Reimer, PJ, Austin, WEN, Bard, E, Bayliss, A, Blackwell, PG, Bronk Ramsey, C, Butzin, M, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kromer, B, Manning, SW, Muscheler, R, Palmer, JG, Pearson, C, van der Plicht, J, Reimer, RW, Scott, EM, Southon, JR, Turney, CSM, Wacker, L, Adolphi, F, Büntgen, U, Capano, M, Fahrni, S, Fogtmann-Schulz, A, Friedrich, R, Köhler, P, Kudsk, S, Miyake, F, Olsen, J, Reining, F, Sakamoto, M, Sookdeo, A, Talamo, S. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4):725757.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MG, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Ramsey, CB, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):11111150.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffman, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M., Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Reimer, PJ, Reimer, RW. 2001. A marine reservoir correction database and on-line interface. Radiocarbon 43:461463. (Supplemental material URL:http://www.calib.org.)CrossRefGoogle Scholar
Reimer, RW, Reimer, PJ. 2017. An online application for ΔR calculation. Radiocarbon 59:16231627.CrossRefGoogle Scholar
Roark, EB, Guilderson, TP, Flood-Page, S, Dunbar, RB, Ingram, BL, Fallon, SJ, McCulloch, M. 2005. Radiocarbon-based ages and growth rates of bamboo corals from the Gulf of Alaska. Geophysical Research Letters 32:L04606, 10.1029/2004GL021919.CrossRefGoogle Scholar
Robinson, LF, Adkins, JF, Keigwin, LD, Southon, J, Fernandez, DP, Wang, S, Scheirer, DS. 2005. Radiocarbon variability in the western North Atlantic during the last deglaciation. Science 310:14691470.CrossRefGoogle ScholarPubMed
Russell, N, Cook, GT, Ascough, PL, Barrett, JH. 2011. Species specific marine radiocarbon reservoir effect: a comparison of [Delta]R values between Patella vulgata (limpet) shell carbonate and Gadus morhua (Atlantic cod) bone collagen. Journal of Archaeological Science 38(5):10081015.CrossRefGoogle Scholar
Russell, N, Cook, GT, Ascough, PL, Scott, EM, Dugmore, AJ. 2016. Examining the Inherent variability in ΔR: new methods of presenting ΔR values and implications for MRE studies. Radiocarbon 53(2):277288.CrossRefGoogle Scholar
Sanja Faivre, S, Bakran-Petricioli, T, Barešić, J, Horvatinčić, N. 2014. Radiocarbon reservoir ages in the Eastern Adriatic Sea based on recent and pre-bomb marine organisms from the intertidal zone and shallow sea. Radiocarbon and diet: aquatic food resources and reservoir effects. p. 62.Google Scholar
Scourse, JD, Wanamaker, AD Jr, Weidman, C, Heinemeier, J, Reimer, PJ, Butler, PG, Richardson, CA. 2012. The marine radiocarbon bomb pulse across the temperate North Atlantic: a compilation of Δ14C time histories from Arctica islandica growth increments. Radiocarbon 54(2):165186.CrossRefGoogle Scholar
Schöne, BR. 2013. Arctica islandica (Bivalvia): a unique paleoenvironmental archive of the northern North Atlantic Ocean. Global and Planetary Change 111: 199225.CrossRefGoogle Scholar
Stuiver, M. 1961. Variations in radiocarbon concentration and sunspot activity. J. Geophysical Research 66:273276.CrossRefGoogle Scholar
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137189.CrossRefGoogle Scholar
Stuiver, M, Pearson, GW, Braziunas, TF. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2B):9801021.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19:355363.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ. 1986. A computer-program for radiocarbon age calibration. Radiocarbon 28:10221030.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ. 1993. Extended 14C data-base and revised Calib 3.0 C-14 age calibration program. Radiocarbon 35:215230.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ, Braziunas, TF. 1998. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40(3):11271151.CrossRefGoogle Scholar
Suess, HE. 1960. Secular changes in the concentration of atmospheric radiocarbon: Conf. on Problems Related to Interplanetary Matter, Highland Park, Illinois. Proc., Nuclear Science Series Report 33. National Academy of Sciences, Washington DC.Google Scholar
Suess, HE. 1970. Bristlecone pine calibration of the radiocarbon time-scale 5200BC to the present. In Olsson, I. U., ed, Radiocarbon variations and absolute chronology, Nobel symposium, 12th, Proc. New York: John Wiley and Sons. p. 303–311.Google Scholar
Taft, WH. 1967. Physical chemistry of formation of carbonates. Developments in Sedimentology 9:151167.CrossRefGoogle Scholar
Taylor, RE, Berger, R. 1967. Radiocarbon content of marine shells from the pacific coasts of Central and South America. Science 158(3805):11801182.CrossRefGoogle ScholarPubMed
Thurber, DL, Broecker, WS, Blanchard, RL, Potratz, HA. 1965. Uranium-series ages of Pacific Atoll coral. Science 149:5558.CrossRefGoogle ScholarPubMed
Toggweiler, JR, Trumbore, S. 1985. Bomb-test 90Sr in Pacific and Indian Ocean surface water as recorded by banded corals. Earth and Planetary Science Letters 74:306314.CrossRefGoogle Scholar
Toggweiler, JR, Druffel, ERM, Key, RM, Galbraith, ED. 2019. Upwelling in the ocean basins north of the ACC: 1. On the upwelling exposed by the surface distribution of Δ14C. J. Geophysical Research: Oceans 124.CrossRefGoogle Scholar
Toth, LT, Cheng, H, Edwards, RL, Ashe, E, Richey, JN, 2017. Millennial-scale variability in the local radiocarbon reservoir age of south Florida during the Holocene. Quaternary Geochronology 42:130143.CrossRefGoogle Scholar
Vita-Finzi, C and Roberts, N. 1984. Selective leaching of shells for 14C dating. Radiocarbon 26(1):5458.CrossRefGoogle Scholar
Wanamaker, AD Jr, Heinemeier, J, Scourse, JD, Richardson, CA, Butler, PG, Eiriksson, J, Knudsen, KL. 2008. Very long-lived mollusks confirm 17th century ad tephra-based radiocarbon reservoir ages for North Icelandic shelf waters. Radiocarbon 50(3):399412.CrossRefGoogle Scholar
Willis, EH, Tauber, H, Münnich, KO. 1960. Variations in the atmospheric radiocarbon concentration over the past 1300 years. Radiocarbon 2:14.Google Scholar
Wyrtki, K, Kilonsky, B. 1984. Mean water and current structure during the Hawaii-to-Tahiti shuttle experiment. J. Physical Oceanography 14:242254.2.0.CO;2>CrossRefGoogle Scholar
Zazzo, A, Munoz, O, Badel, E, Béguier, I, Genchi, F, Marcucci, LG. 2016. A revised radiocarbon chronology of the aceramic shell midden of Ra’s Al-Hamra 6 (Muscat, Sultanate of Oman): implication for occupational sequence, marine reservoir age, human mobility. Radiocarbon 58(2):383395.CrossRefGoogle Scholar
Zhao, N, Marchal, O, Keigwin, LD, Amrhein, D, Gebbie, G. 2018. A synthesis of deglacial deep-sea radiocarbon records and their (in)consistency with modern ocean ventilation. Paleoceanography and Paleoclimatology 33:128151.CrossRefGoogle Scholar