Hostname: page-component-6d856f89d9-jhxnr Total loading time: 0 Render date: 2024-07-16T08:17:10.716Z Has data issue: false hasContentIssue false

Simple Calibration versus Bayesian Modeling of Archeostatigraphically Controlled 14C Ages in an Early Avar Age Cemetery from SE Hungary: Results, Advantages, Pitfalls

Published online by Cambridge University Press:  19 November 2018

Sándor Gulyás*
Affiliation:
Department of Geology and Palaeontology, University of Szeged, 2-6 Egyetem u., 6722 Szeged, Hungary
Csilla Balogh
Affiliation:
Medeniyet Üniversitesi, Sanat Tarih Bölümü, Istanbul, Turkey
Antónia Marcsik
Affiliation:
Department of Anthropology, University of Szeged, 52 Középfasor 6726 Szeged, Hungary
Pál Sümegi
Affiliation:
Department of Geology and Palaeontology, University of Szeged, 2-6 Egyetem u., 6722 Szeged, Hungary Archaeological Institute of Hungarian Academy of Sciences, 49. Úri u., 1014 Budapest, Hungary
*
*Corresponding author. Emails: gulyas.sandor@geo.u-szeged.hu, csigonc@gmail.com

Abstract

Recent advancements in accelerator mass spectroscopic (AMS) radiocarbon (14C) analytical methods and instrumentation offer us reliable conventional 14C ages with highly reduced analytical uncertainty for archeological bone collagen. However, after calibration this may be still too high for archeologists in periods where archeochronology is capable of attaining a resolution of 25–30 yr. Furthermore, there are cases when wiggles in the calibration curve yield wider age ranges than initially expected. For the Avar Age in the Carpathian Basin (568 to early 9th century AD) reliable archeotypochronology is available for the 7th century AD alone. The date of Avar invasion (568 AD) is precisely known. Precise archeological dating for the late 6th and the 9th centuries is lacking, calling for other methods to be introduced. This paper reports the first 14C dates for an Early Avar Age cemetery, Makó-Mikócsa. According to archeotypochronology, the cemetery was in use for three generations until the mid-7th century AD. The imprecision in 14C chronology arising from wiggles in the IntCal13 curve was significantly reduced by relative stratigraphy-controlled Bayesian modeling. Introduction of further age constraints from archeotypochronology into the model reduces broad absolute age ranges providing more constraint ages.

Type
Instrumentation and Calibration
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2nd Radiocarbon in the Environment Conference, Debrecen, Hungary, 3–7 July 2017

References

REFERENCES

Aitken, MJ. 1990. Science-Based Dating in Archaeology. London: Longman. Google Scholar
Aitken, MJ. 2003. Radiocarbon dating. In: Ellis L, editor. Archaeological Method and Theory. New York: Garland Publishing. p 505508.Google Scholar
Balogh, Cs. 2017. Orta Tisa Bölgesi’nde Doğu Avrupa Bozkır Kökenli Göçebe Bir Topluluğa Ait Mezarlık (Makó, Mikócsa-halom, Macaristan) – A Cemetery Belonging to an Nomad Community of Eastern Europe Steppe Origin in the Middle Tisza Region (Makó, Mikócsa-halom, Hungary). Art Sanat 7:5370.Google Scholar
Balogh, Cs, Gulyás, S. 2015. Bevezető gondolatok, tervek elképzelések egy interdiszciplináris régészeti, régészeti geológiai OTKA pályázathoz (Introductory remarks to an interdisciplinary geoarcheological research project). MARVAR Workshop, Szeged, Proceedings.Google Scholar
Bayliss, A. 2007. Bayesian buildings: an introduction for the numerically challenged. Vernacular Architecture 38:7586.Google Scholar
Bayliss, A. 2009. Rolling out revolution: using radiocarbon dating in archaeology. Radiocarbon 51: 123147.Google Scholar
Bayliss, A, Bronk Ramsey, C. 2004. Pragmatic Bayesians: a decade of integrating radiocarbon dates into chronological models. In: Buck CE, Millard A, editors. Tools for Constructing Chronologies: Tools for Crossing Interdisciplinary Boundaries. London: Springer-Verlag. p 2541.Google Scholar
Bayliss, A, Bronk Ramsey, C, van der Plicht, J, Whittle, A, 2007. Bradshaw and Bayes: towards a timetable for the Neolithic. Cambridge Archaeological Journal 17:128.Google Scholar
Brock, F, Ramsey, CB, Higham, T. 2007. Quality assurance of ultrafiltered bone dating. Radiocarbon 49:187192. doi: 10.1017/S0033822200042107.Google Scholar
Buck, CE, Millard, A. 2004. Tools for Constructing Chronologies: Crossing Disciplinary Boundaries, Lecture Notes in Statistics. London: Springer-Verlag.Google Scholar
Buck, CE, Kenworthy, JB, Litton, CD, Smith, AFM. 1991. Combining archaeological and radiocarbon information: a Bayesian approach to calibration. Antiquity 65:808821.Google Scholar
Buck, CE, Litton, CD, Scott, EM. 1994. Making the most of radiocarbon dating: some statistical considerations. Antiquity 68:252.Google Scholar
Buck, CE, Cavanagh, WG, Litton, CD. 1996. Bayesian approach to interpreting archaeological data. Chichester: John Wiley & Sons, Ltd.Google Scholar
Bronk Ramsey, C. 2008. Radiocarbon dating: revolutions in understanding. Archaeometry 50: 249275.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51:337360.Google Scholar
Bowman, S. 1995. Radiocarbon Dating. London: British Museum Press.Google Scholar
Cook, GT, Bonsall, C, Hedges, REM, McSweeney, K, Boroneanţ, V, Pettitt, PB. 2001. A freshwater diet-derived 14C reservoir effect at the Stone Age sites in the Iron Gates gorge. Radiocarbon 43: 453460.Google Scholar
Daim, F. 2000. Byzantinische” Gürtelgarnituren des 8. Jahrhunderts. In: Die Awaren am Rand der byzantinischen Welt: Studien zu Diplomatie, Handel und Technologietransfer im Frühmittelalter. Monographien zur Frühgeschichte und Mittelalterarchäologie 7. Innsbruck. p 77−204.Google Scholar
Garam, É. 1992. Die münzdatierten Gräber der Awarenzeit. Awarenforschungen I. Archaeologia Austriaca Monographien: 135250.Google Scholar
Gillespie, R, Hedges, REM, Wand, JO. 1984. Radiocarbon dating of bone by accelerator mass spectrometry. Journal of Archeological Science 11:165170.Google Scholar
Gulyás, S, Balogh, Cs, Sümegi, P, Marcsik, A, Körössi, A, Rodushkin, I, Kelemen, H. 2015. Preliminary results of anthropological, zooarcheological and geochemical (isotope and trace element) analyses of human, animal and soil remains from and Early Avar Age (6–7th century AD) cemetery of SE Hungary. XIX. INQUA Congress, Nagoya, Book of Abstracts T02927.Google Scholar
Higham, TFG, Jacobi, RM, Bronk Ramsey, C. 2006. AMS radiocarbon dating of ancient bone using ultrafiltration. Radiocarbon 48(2):179195.Google Scholar
Libby, WF. 1965. Radiocarbon Dating. Chicago, Phoenix.Google Scholar
Long, A, Wilson, A, Ernst, R, Gore, B, Hare, P. 1989. AMS radiocarbon dating of bones at Arizona. Radiocarbon 31(3):231238. doi: 10.1017/S0033822200011735.Google Scholar
Martin, M. 2008 Die absolute Datierung der Männergürtel im merowingischen Westen und im Awarnreich. Antaeus 29–30: 143173.Google Scholar
Meadows, J, Meadows, B, Ute, V, Ute, B, Harald, L, Schmölcke, U, Staude, A, Zagorska, I, Zarina, G. 2016. Dietary freshwater reservoir effects and the radiocarbon ages of prehistoric human bones from Zvejnieki, Latvia. Journal of Archaeological Science: Reports. 6: 678689.Google Scholar
Rácz, Zs. 2014. Die Goldschmiedergräber der Awarenzeit. Monographien des Römisch-Germanisches Zentralmuseums 116. Mainz.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, C, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatte, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Schoeninger, MJ. 2010. Diet reconstruction and ecology using stable isotope ratios. In: Larsen CS, editor. A Companion to Biological Anthropology. Oxford: Blackwell. p 445464.Google Scholar
Siklóssy, Zs, Lőriczy, G. 2015. Radiocarbon dating, Bayesian analysis and archaeological evaluation of the Late Avar cemetery at Pitvaros-Víztározó. In: Balogh Cs, Major B, editor. Hadak útján XXIV. Budapest: Archeolingua. p 707718.Google Scholar
Somogyi, P. 1997. Byzantinische Fundmünzen der Awarenzeit. In: Daim F, editor. Monographien zur Frühgeschichte und Mittelalterarcheologie 5. Innsbruco.Google Scholar
Somogyi, P. 2005. Újabb gondolatok a bizánci érmék avarföldi elterjedéséről. Numizmatikai megjegyzések Bálint Csanád közép avar kor kezdetére vonatkozó vizsgálataihoz. — Neue Überlegungen über den Zustrom byzantinischer Münzen ins Awarenland. Numismatischer Kommentar zu Csanád Bálints Betrachtungen zum Beginn der Mittelawarenzeit. A Móra Ferenc Múzeum Évkönyve – Studia Archaeologica 11: 189228.Google Scholar
Somogyi, P. 2011. Byzantinische Fundmünzen in der Awarenforschung—eine Forschungsgeschichte von den Anfängen bis zum Jahre 2010. A Móra Ferenc Múzeum Évkönyve – Studia Archaeologica 12:171224.Google Scholar
Somogyi, P. 2014. Byzantinische Fundmünzen der Awarenzeit in ihrem europäischen Umfeld. Dissertationes Pannonicae 2(4). BudapestGoogle Scholar
Suess, HE. 1970. Bristlecone-pine calibration of the radiocarbon time-scale 5200 B.C. to the present. In: Olsson I, editor. Radiocarbon Variations and Absolute Chronology. New York: John Wiley & Sons. p 303311.Google Scholar
Szádeczky-Kardoss, S. 1992. Az avar történelem forrásai I. Szeged.Google Scholar
Szalontai, Cs. 1991. Megjegyzések az Alföld IX. századi történetéhez. A késő avar karéjos övveretek (Bemerkungen zur Geschichte des Alföld im 9. Jahrhundert. Spätawarenzeitliche schuppenförmige Gürtelbeschläge). A Móra Ferenc Múzeum Évkönyve 1984–1985:2:463482.Google Scholar
Szalontai, Cs. 1996. „Hohenbergtől Záhonyig”. Egy késő avar kori övverettípus vizsgálata („Von Hohenberg bis Záhony”. Untersuchung eines spätawarenzeitlichen Gürtelbeschlagtyps). Savaria Pars Archaeologica 22:145162.Google Scholar
Taylor, RE. 1992. Radiocarbon dating of bone: to collagen and beyond. In: Taylor RE, Long A, Kra RS, editors. Radiocarbon After Four Decades. New York: Springer.Google Scholar
Taylor, RE, Bar-Yosef, O. 2014. Radiocarbon Dating. 2nd edition. Walnut Creek (CA): Left Coast Press.Google Scholar
Tisnérat-Laborde, N, Valladas, H, Kaltnecker, E, Arnold, M. 2003. AMS radiocarbon dating of bones at LSCE. Radiocarbon 45:409419.Google Scholar
Tuniz, C, Zoppi, U, Barbetti, M. 2004. Radionuclide dating in archaeology by accelerator mass spectrometry. In: Martini M, Milazzo M, Piacentini M, editors. Physics Methods in Archaeometry. Amsterdam: IOS Press. p 385405.Google Scholar
Tuross, N, Fogel, ML, Hare, PE. 1988. Variability in the preservation of the isotopic com- position of collagen from fossil bone. Acta Geochimica et Cosmochimica 52:929935.Google Scholar
Zábojník, J. 1991. Seriation von Gürtelgarnituren aus dem Gebiet der Slowakei und Österreichs (Beitrag zur Chronologie der Zeit des awarischen Kaganats). In: Hurikova G, editor. K problematike osídlenia stredodunaskej oblasti vo včasnom stredoveku. Nitra. p 219321.Google Scholar
Zábojník, J. 2008. Die Rolle der Münzdatierung in der Mittelawarenzeit. Antaeus 29–30:301306.Google Scholar
Supplementary material: File

Gulyás et al. supplementary material

Gulyás et al. supplementary material 1

Download Gulyás et al. supplementary material(File)
File 2.2 MB