Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-09T23:56:41.495Z Has data issue: false hasContentIssue false

A Derivation of Lovász' Theta via Augmented Lagrange Duality

Published online by Cambridge University Press:  15 November 2003

Mustapha Ç. Pinar*
Affiliation:
Bilkent University, Department of Industrial Engineering, 06800 Ankara, Turkey; mustafap@bilkent.edu.tr..
Get access

Abstract

A recently introduced dualization technique for binary linear programs with equality constraints, essentially due to Poljak et al. [13], and further developed in Lemaréchal and Oustry [9], leads to simple alternative derivations of well-known, important relaxations to two well-known problems of discrete optimization: the maximum stable set problem and the maximum vertex cover problem. The resulting relaxation is easily transformed to the well-known Lovász θ number.

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

F. Alizadeh, J.-P. Haberly, V. Nayakkankuppam and M.L. Overton, SDPPACK user's guide, Technical Report 734. NYU Computer Science Department (1997).
N. Brixius, R. Sheng and F. Potra, SDPHA user's guide, Technical Report. University of Iowa (1998).
M. Grötschel, L. Lovász and A. Schrijver, Geometric Algorithms and Combinatorial Optimization. Springer-Verlag, Berlin (1988).
Helmberg, C., Fixing variables in semidefinite relaxations. SIAM J. Matrix Anal. Appl. 21 (2000) 952-969. CrossRef
C. Helmberg, S. Poljak, F. Rendl and H. Wolkowicz, Combining semidefinite and polyhedral relaxations for integer programs, edited by E. Balas and J. Clausen, Integer Programming and Combinatorial Optimization IV. Springer-Verlag, Berlin, Lecture Notes in Comput. Sci. 920 (1995) 124-134.
Kleinberg, J. and Goemans, M., The Lovász theta function and a semidefinite programming relaxation of vertex cover. SIAM J. Discrete Math. 11 (1998) 196-204. CrossRef
D. Knuth, The sandwich theorem. Electron. J. Combinatorics 1 (1994);
Laurent, M., Poljak, S. and Rendl, F., Connections between semidefinite relaxations of the max-cut and stable set problems. Math. Programming 77 (1997) 225-246.
C. Lemaréchal and F. Oustry, Semidefinite relaxation and Lagrangian duality with application to combinatorial optimization, Technical Report 3170. INRIA Rhône-Alpes (1999); http://www.inria.fr/RRRT/RR-3710.html
Lovász, L., On the Shannon capacity of a graph. IEEE Trans. Inform. Theory 25 (1979) 355-381. CrossRef
L. Lovász, Bounding the independence number of a graph. Ann. Discrete Math. 16 (1982).
Lovász, L. and Schrijver, L., Cones of matrices, and set functions and 0-1 optimization. SIAM J. Optim. 1 (1991) 166-190. CrossRef
Poljak, S., Rendl, F. and Wolkowicz, H., A recipe for semidefinite relaxation for (0-1) quadratic programming. J. Global Optim. 7 (1995) 51-73. CrossRef
N. Shor, Nondifferentiable Optimization and Polynomial Problems. Kluwer Academic Publishers, Dordrecht, The Netherlands (1998).