Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-07T10:46:51.000Z Has data issue: false hasContentIssue false

Colony stimulating factor-1 (CSF-1) in pregnancy

Published online by Cambridge University Press:  02 March 2009

Eric Daiter
Affiliation:
Albert Einstein College of Medicine, New York, USA
Jeffrey W Pollard*
Affiliation:
Albert Einstein College of Medicine, New York, USA
*
Jeffrey W Pollard, Department of Developmental Biology and Cancer, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.

Abstract

Uterine growth factors appear to play a role in the regulation of pregnancy. One of these, colony stimulating factor-1 (CSF-1), synthesized by the uterine epithelium under the control of female sex steroids, has been shown to have important functions both before implantation and during the formation of the placenta. In the female reproductive tract the CSF-1 receptor, the product of the c-fms proto-oncogene, is expressed in decidual cells, trophoblasts and macrophages, indicating that these cells are the primary targets for CSF-1. This article reviews the biology of CSF-1 during gestation as well as the possible involvement of CSF-1 and its receptor in the aetiology of gynaecological tumours.

Type
Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Evans, RM. The steroid and thyroid hormone receptor superfamily. Science 1988; 240: 889–95.CrossRefGoogle ScholarPubMed
2 Pollard, JW. Regulation of polypeptide growth factor synthesis and growth factor-related gene expression in the rat and mouse uterus before and after implantation. J Reprod Fertil 1990; 88 721–31.CrossRefGoogle ScholarPubMed
3 Heldin, CH, Westermark, B. Growth factors as transforming proteins. Eur J Biochem 1989; 184: 487–96.CrossRefGoogle ScholarPubMed
4 Cantley, LC, Auger, KR, Carpenter, C et al. Oncogenes and signal transduction. Cell 1991; 64: 281302.CrossRefGoogle ScholarPubMed
5 Pollard, JW, Bartocci, A, Arceci, R, Orlofsky, A, Ladner, MB, Stanley, ER. Apparent role of the macrophage growth factor, CSF-1, in placental development. Nature 1987; 330: 484–86.CrossRefGoogle ScholarPubMed
6 Lingham, RB, Stancel, GM, Loose-Mitchell DS. Estrogen regulation of epidermal growth factor receptor messenger ribonucleic acid. Mol Endocrinol 1988; 2: 230–35.CrossRefGoogle ScholarPubMed
7 Tamada, H, McMaster, MT, Flanders, KC, Andrews, GK, Dey, SK. Cell-type specific expression of transforming growth factor-β1 in the mouse uterus during the peri-implantation period. Mol Endocrinol 1990; 4: 965–72.CrossRefGoogle Scholar
8 Yelavarthi, KK, Chen, H-L, Yang, Y, Crowley, BD, Fishback, JL, Hunt, JS. Tumor necrosis factor-α mRNA and protein in rat uterine and placental cells. J Immunol 1991; 146: 3840–48.CrossRefGoogle ScholarPubMed
9 Ohisson, R. Growth factors, protooncogenes and human placental development. Cell Differ Dev 1989; 28: 116.CrossRefGoogle Scholar
10 Adamson, ED. Review article: expression of protooncogenes in the placenta. Placenta 1987; 8: 449–66.CrossRefGoogle ScholarPubMed
11 Das, SK, Stanley, ER, Guilbert, LJ, Forman, LW. Discrimination of a colony stimulating factor by a specific receptor on a macrophage cell line. J Cell Physiol 1980; 104: 359–66.CrossRefGoogle ScholarPubMed
12 Bradley, TR, Metcalf, D. The growth of mouse bone marrow cells in vitro. Aust J Biol Sci 1966; 44: 287–99.CrossRefGoogle ScholarPubMed
13 Stanley, ER. Role of the colony stimulating factor-1 in monocytopoiesis and placental development. In: Mahowald, AP ed. Genetics of pattern formation and growth control. New York: Wiley-Liss. 1990: 165–80.Google Scholar
14 Tushinski, RJ, Oliver, IT, Guilbert, LJ, Tynan, WP, Warner, JR, Stanley, ER. Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy. Cell 1982; 28: 7181.CrossRefGoogle ScholarPubMed
15 Ladner, MB, Martin, GA, Noble, JA et al. , Human CSF-1: gene structure and alternative splicing of mRNA precursors. EMBO J 1987; 6: 2693–98.CrossRefGoogle ScholarPubMed
16 Ladner, MB, Martin, GA, Noble, JA et al. , cDNA cloning and expression of murine macrophage colony stimulating factor from L929 cells. Proc Natl Acad Sci USA 1988; 85: 6706–10.CrossRefGoogle ScholarPubMed
17 Roth, P, Stanley, ER. The biology of CSF-1 and its receptor. Curr Top Microbiol Immunol 1992 (in press).CrossRefGoogle Scholar
18 Wiktor-Jedrzejczak, W, Bartocci, A, Ferrante, AW Jr et al. , Total absence of colony-stimulating factor-1 in the macrophage deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci USA 1991; 87: 4828–32.CrossRefGoogle Scholar
19 Kawasaki, ES, Ladner, MB. Molecular biology of macrophage colony stimulating factor. In: Dexter, TM, Garland, JM, Testa, NG eds. Colony stimulating factors, molecular and cellular biology. New York: Marcel Dekker Inc, 1990: 155–76.Google Scholar
20 Suzu, S, Yanai, N, Sato-Somoto, Y et al. , Characterization of macrophage colony-stimulating factor in body fluids by immunoblot analysis. Blood 1991; 77: 2160–65.CrossRefGoogle ScholarPubMed
21 Rettenmier, CW, Roussel, MF. Differential processing of colony-stimulating factor-1 precursors encoded by two human cDNAs. Mol Cell Biol 1988; 8:5026–36.Google ScholarPubMed
22 Stein, J, Borzillo, GV, Rettenmier, CW. Direct stimulation of cells expressing receptors for macrophage colony-stimulating factor (CSF-1) by a plasma membrane-bound precursor of human CSF-1. Blood 1990; 76: 1308–14.CrossRefGoogle ScholarPubMed
23 Shaw, G, Kamen, R. A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 1986; 46: 659–67.CrossRefGoogle ScholarPubMed
24 Sherr, CJ. Colony stimulating factor-1 receptor. Blood 1990; 75: 112.CrossRefGoogle ScholarPubMed
25 Sherr, CJ, Rettenmier, CW, Sacca, R, Roussel, MF, Look, AT, Stanley, ER. The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell 1985; 41: 665–76.CrossRefGoogle Scholar
26 Sengupta, A, Liu, W-K, Yeung, YG, Yeung, DCY, Frackelton, AR Jr, Stanley, ER. Identification and subcellular localization of proteins that are rapidly phosphorylated in tyrosine in response to colony-stimulating factor 1. Proc Natl Acad Sci USA 1988; 85: 8062–66.CrossRefGoogle ScholarPubMed
27 Guilbert, LJ, Tynan, PW, Stanley, ER. Uptake and destruction of125 I-CSF-1 by peritoneal exudate macrophage. J Cell Biochem 1986; 31: 203–16.CrossRefGoogle Scholar
28 Bartocci, A, Pollard, JW, Stanley, ER. Regulation of colony stimulating factor 1 during pregnancy. J Exp Med 1986; 164: 956–61.CrossRefGoogle ScholarPubMed
29 Arceci, RJ, Shanahan, F, Stanley, ER, Pollard, JW. Temporal expression and location of colonystimulating factor 1 (CSF-1) and its receptor in the female reproductive tract are consistent with CSF-1 regulated placental development. Proc Natl Acad Sci USA 1989; 86: 8818–22.CrossRefGoogle ScholarPubMed
30 Pampfer, S, Daiter, E, Barad, D, Pollard, JW. Expression of colony stimulating factor-1 receptor (the c-fms proto-oncogene product) in the human uterus and placenta. Biol Reprod 1992; 46: 4857.CrossRefGoogle Scholar
31 Regenstrief, LJ, Rossant, J. Expression of the c-fms proto-oncogene and of the cytokine, CSF-1 during mouse embryogenesis. Dev Biol 1989; 133: 284–94.CrossRefGoogle Scholar
32 Kacinski, BM, Bloodgood, RS, Carter, D et al. M-CSF (CSF-1), its receptor the fms protein, and other lymphohematopoietic factors and receptors involved in macrophage activation (IL-3, G-IFN, GM-CSF) play important roles in producing the proliferative and invasive characteristics of human ovarian, endometrial and other (breast, lung) adenocarcinomas in vivo and in vitro. int J Radiat Oncol Biol Phys 1988; 5 (suppl 1): 140.Google Scholar
33 Bradley, TR, Stanley, ER, Sumner, MA. Factors from mouse tissues stimulating colony growth of mouse bone marrow cells in vitro. J Exp Med 1971; 49: 595603.Google ScholarPubMed
34 Burgess, AW, Wilson, EMA, Metcalf, D. Stimulation by human placental conditioned medium of hematopoietic colony formation by human marrow cells. Blood 1977; 49: 573–83.CrossRefGoogle ScholarPubMed
35 Rosendaal, M. Colony stimulating factor (CSF) in the uterus of the pregnant mouse. J Cell Sci 1975; 19: 411–23.CrossRefGoogle ScholarPubMed
36 Stanley, ER. Colony stimulating factor (CSF) radioimmunoassay: detection of a CSF subclass stimulating macrophage production. Proc Natl Acad Sci USA 1979; 76: 2969–73. (See also correction: Proc Natl Acad Sci USA 1979; 76: 5411.)CrossRefGoogle ScholarPubMed
37 Crainie, M, Guilbert, L, Wegmann, TG. Expression of novel cytokine transcripts in murine placenta. Biol Reprod 1990; 43: 9991005.CrossRefGoogle ScholarPubMed
38 Arceci, RJ, Pampfer, S, Pollard, JW. Expression of CSF-1 c-fms and SF c-kit mRNA during preimplantation mouse development. Dev Biol 1992 (in press).CrossRefGoogle Scholar
39 Daiter, E, Pampfer, S, Yeung, YG, Barad, D, Stanley, ER, Pollard, JW. CSF-1 in the human uterus and placenta. J Clin Endocrinol Metab 1992 (in press).Google Scholar
40 Ringler, GE, Coutifaris, C, Strauss, JF III, Allen, JI, Geier, M. Accumulation of colony stimulating factor 1 in amniotic fluid during human pregnancy. Am J Obstet Gynecol 1989; 160: 655–56.CrossRefGoogle ScholarPubMed
41 Azuma, C, Saji, F, Kimura, T et al. Steroid hormones induce macrophage colony stimulating factor (MCSF) and MCSF receptor mRNAs in the human endometrium. J Mol Endocrinol 1990; 5: 103108.CrossRefGoogle ScholarPubMed
42 Pollard, JW, Pampfer, S, Daiter, E, Barad, D, Arceci, RJ. Colony stimulating factor 1 in the mouse and human uteroplacental unit. In: Schomberg, DW ed. Growth factors in reproduction. New York, Berlin: Springer Verlag, 1991: 219–29.CrossRefGoogle Scholar
43 Roth, P. Colony stimulating factor-1 levels in human newborn infant. J Pediatr 1991; 119: 113–16.CrossRefGoogle ScholarPubMed
44 Pampfer, S, Tabibzadeh, S, Chuan, FC, Pollard, JW. Expression of colony stimulating factor-1 (CSF-1) mRNA in human endometrial glands during the menstrual cycle: molecular cloning of a novel transcript that predicts a transmembrane form of CSF-1. Mol Endocrinol 1991; 5: 1931–38.CrossRefGoogle Scholar
45 Muller, R, Slamon, DJ, Adamson, ED et al. Transcription of c-one genes c-raski and c-fms during mouse development. Mol Cell Biol 1983; 3: 1062–69.Google Scholar
46 Hoshina, M, Nishio, A, Bo, M, Boime, I, Mochizuki, M. The expression of oncogene fms in human chorionic tissue. Ada Obstet Gynaecol Jpn 1985; 37: 2791–98.Google ScholarPubMed
47 Visvader, J, Verma, IM. Differential transcription of exon 1 of the human c-fms gene in placental trophoblasts and monocytes. Mol Cell Biol 1989; 9: 1336–41.Google ScholarPubMed
48 Athanassakis, I, Bleackley, C, Paetkau, V, Guilbert, L, Barr, PJ, Wegmann, TG. The immunostimulatory effect of T cells and T-cell lymphokines on murine fetally derived placental cells. J Immunol 1987; 138: 3744.CrossRefGoogle ScholarPubMed
49 Guilbert, LJ, Athanassakis, I, Branch, DR et al. The placenta is an immune-endocrine interface: placental cells as targets for lymphohematopoietic cytokine stimulation. In: Wegmann, TG, Gill, T III, Nisbet-Brown, E eds. The molecular and cellular immunobiology of the maternal fetal interface. Oxford: Oxford University Press, 1991: 261–76.Google Scholar
50 Pampfer, S, Arceci, RJ, Pollard, JW. Role of colony stimulating factor-1 (CSF-1) and other lympho-hematopoietic growth factors in mouse pre-implantation development. Bioessays 1991; 13: 535–40.CrossRefGoogle ScholarPubMed
51 Marks, SC, Lane, PW. Osteopretosis, a new recessive skeletal mutation on chromosome 12 of the mouse. J Hered 1976; 67: 1118.CrossRefGoogle ScholarPubMed
52 Yoshida, H, Hayashi, SI, Kunisada, T et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 1990: 345: 442–44.CrossRefGoogle ScholarPubMed
53 Wiktor-Jedrzejczak, W, Ahmed, A, Szczylik, C, Skelly, RR. Hematological characterization of congenital osteopetrosis in op/op mouse. J Exp Med 1982; 156: 1516–27.CrossRefGoogle ScholarPubMed
54 Pollard, JW, Hunt, JS, Wiktor-Jedrzejczak, W, Stanley, ER. A pregnancy defect in the osteopetrotic (op/op) mouse demonstrates the requirement for CSF-1 in female fertility. Dev Biol 1991; 148: 273–83.CrossRefGoogle ScholarPubMed
55 Wiktor-Jedrzejczak, W, Urbanowska, E, Aukerman, SL et al. , Correction by CSF-1 of defects in the osteopetroti. op/op mouse suggest local, developmental and humoral requirements for this growth factor. Exp Hematol 1991; 19: 1049–54.Google ScholarPubMed
56 Hunt, JS, Pollard, JW. Macrophages in the uterus and placenta. In: Russell, SW, Gordon, S eds. Macrophages and macrophage activation. Current topics in microbiology and immunology. New York: Springer-Verlag, 1992 (in press).Google Scholar
57 Hunt, JS. Cytokine networks in the uteroplacental unit: macrophages as pivotal regulatory cells. J Reprod Immunol 1989; 16: 117.CrossRefGoogle ScholarPubMed
58 Coussens, L, Van Beveren, C, Smith, D et al. Structural alteration of viral homologue of receptor protooncogene fms at carboxyl terminus. Nature 1986; 320: 277–80.CrossRefGoogle ScholarPubMed
59 Roussel, MF, Downing, JR, Rettenmier, CW, Sherr, CJ. A point mutation in the extracellular domain of the human CSF-1 receptor (c-fms proto-oncogene product) activates its transforming potential. Cell 1988; 55:979–88.CrossRefGoogle ScholarPubMed
60 Woolford, J, McAuliffe, A, Rohrschneider, LR. Activation of the feline c-fms proto-oncogene: multiple alterations are required to generate a fully transformed phenotype. Cell 1988; 55: 965–77.CrossRefGoogle ScholarPubMed
61 Wheeler, EF, Rettenmier, CW, Look, AT, Sherr, CJ. The v-fms oncogene induces factor independence and tumorgenicity in CSF-1 dependent macrophage cell line. Nature 1986; 324: 377–80.CrossRefGoogle Scholar
62 Borzillo, GV, Sherr, CJ. Early pre-B-cell transformation induced by v-fms oncogene in long-term mouse bone marrow cultures. Mol Cell Biol 1989; 9: 3973–81.Google ScholarPubMed
63 Roussel, MF, Dull, TJ, Rettenmier, CW, Ralph, P, Ullrich, A, Sherr, CJ. Transforming potential of the c-fms proto-oncogene (CSF-1 receptor). Nature 1987; 325: 549–52.CrossRefGoogle ScholarPubMed
64 Slamon, DJ, de Kernion, JB, Verma, IM, Cline, MJ. Expression of cellular oncogenes in human malignancies. Science 1984; 224: 256–62.CrossRefGoogle ScholarPubMed
65 Sariban, E, Mitchell, T, Kufe, D. Expression of the c-fms proto-oncogene during human monocytic differentiation. Nature 1985; 316: 6466.CrossRefGoogle ScholarPubMed
66 Wakamiya, N, Horiguchi, J, Kufe, D. Detection of c-fms and CSF-1 RNA by in situ hybridization. Leukemia 1987; 1: 518–20.Google ScholarPubMed
67 Rambaldi, A, Wakamiya, N, Vellenger, E et al. Expression of the macrophage colony-stimulating factor and c-fms genes in human acute myeloblastic leukemia cells. J Clin Invest 1988; 81: 1030–35.CrossRefGoogle ScholarPubMed
68 Muller, R, Tremblay, JM, Adamson, ED, Verma, IM. Tissue and cell type specific expression of two human c-onc genes. Nature 1983; 304: 454–56.CrossRefGoogle ScholarPubMed
69 Woolford, J, Rothwell, V, Rohrschneider, L. Characterization of the human c-fms gene product and its expression in cells of the monocytemacrophage lineage. Mol Cell Biol 1985; 5: 3458–66.Google ScholarPubMed
70 Rettenmier, CW, Sacca, R, Furman, WL et al. Expression of the human c-fms proto-oncogene product (colony stimulating factor-1 receptor) on peripheral blood mononuclear cells and choriocarcinoma cell lines. J Clin Invest 1986; 77: 1740–46.CrossRefGoogle ScholarPubMed
71 Stuart, SG, Simister, NE, Clarkson, SB, Kacinski, BM, Shapiro, M, Mellman, I. Human IgG Fc receptor (hFcRII; CD32) exists as multiple isoforms in macrophages, lymphocytes and IgG-transporting placental epithelium. EMBO J 1989; 8: 3657–66.CrossRefGoogle ScholarPubMed
72 Wegman, TG. The cytokine basis for cross-table between the maternal immune and reproductive systems. Curr Op Immunol 1990; 2: 765–69.CrossRefGoogle Scholar
73 Yeh, IT, Kurman, RJ. Functional and morphologic expressions of trophoblasts. Lab Invest 1989; 61: 14.Google Scholar
74 Kacinski, BM, Carter, D, Mittal, K et al. High level expression o. fms proto-oncogene mRNA is observed in clinically aggressive human endometrial adenocarcinomas. Int J Radiat Oncol Biol Phys 1988; 5: 823–29.CrossRefGoogle Scholar
75 Baiocchi, G, Kavanagh, JJ, Talpaz, M, Wharton, JT, Gutterman, JU, Kurzrock, R. Expression of the macrophage colony stimulating factor and its receptor in gynecologic malignancies. Cancer 1991; 67: 990–96.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
76 Croxtall, JD, Pollard, JW, Carey, F, Forder, RA, White, JO. Colony stimulating factor-1 stimulates Ishikawa cell proliferation and lipocortin II synthesis. J Steroid Biochem 1992 (in press).CrossRefGoogle Scholar
77 Kacinski, BM, Carter, D, Mittal, K et al. Ovarian adenocarcinomas expres. fms complementary transcripts and fms antigen, often with coexpression of CSF-1. Am J Pathol 1990; 17: 135–47.Google Scholar
78 Kacinski, BM, Scata, KA, Carter, D et al. FMS (CSF-1 receptor) and CSF-1 transcripts and protein are expressed by human breast carcinomas in vivo and in vitro. Oncogene 1991; 6: 941–52.Google ScholarPubMed
79 Donovan-Peluso, M, Contento, AM, Tobon, H, Ripepi, B, Locker, J. Oncogene amplification in breast cancer. Am J Pathol 1991; 138: 835–45.Google ScholarPubMed
80 Nigro, JM, Baker, SJ, Preisinger, AC et al. Mutations in the p53 gene occur in diverse human tumour types. Nature 1989; 342: 705707.CrossRefGoogle ScholarPubMed
81 Kacinski, BM, Chambers, SK, Carter, D et al. The macrophage colony stimulating factor CSF-1, an auto- and paracrine tumor cytokine, is also a circulating ‘tumor-marker’ in patients with ovarian, endometrial and pulmonary neoplasms. In: Dinarello, CA, Powander, M, Kluger, MJ, Oppenheim, J. The physiological and pathological effects of cytokines. New York: Wiley Liss, 1990: 393400.Google Scholar
82 Kacinski, BM, Stanley, ER, Carter, D et al. A lymphohematopoietic cytokine may be a useful marker of disease status in patients with malignant ovarian neoplasms. Int J Radiat Oncol Biol Phys 1989; 17: 159–64.CrossRefGoogle ScholarPubMed
83 Pollard, JW, Pampfer, S, Daiter, E, Arceci, RJ. Cytokines at the maternal fetal interface: colony stimulating factor-1 as a paradigm for the maternal regulation of pregnancy. In: Strauss, JF III, Lyttle, CR. Uterine and embryonic factors in early pregnancy. New York: Plenum Press, 1991: 107–18.CrossRefGoogle Scholar
84 Pollard, JW. Lymphohematopoietic cytokines in the female reproductive tract. Curr Op Immunol 1991; 3: 772–77.CrossRefGoogle ScholarPubMed
85 Romero, R, Brody, DT, Oyarzun, E et al. Infection and labor. III. Interleukin-1: a signal for the onset of parturition. Am J Obstet Gynecol 1989; 160: 1117–23.CrossRefGoogle ScholarPubMed
86 Romero, R, Avila, C, Santhanam, U, Sehgal, PB. Amniotic fluid interleukin 6 in preterm labor. J Clin Invest 1989; 85: 13921400.CrossRefGoogle Scholar
87 Moore, RN, Oppenheim, JJ, Farrer, JJ, Carter, CS, Waheed, A, Shadduck, RK. Production of lymphokine-activating factor (interleukin 1) by macrophages activated with colony stimulating factors. J Immunol 1980; 125: 1302–305.CrossRefGoogle Scholar
88 Warren, MK, Ralph, P. Macrophage growth factor CSF-1 stimulates human monocyte production of interferon, tumor necrosis factor, and colony stimulating activity. J Immunol 1986; 137: 2281–85.CrossRefGoogle ScholarPubMed
89 Haining, REB, Schofield, JP, Jones, DSC, Rajput-Williams, J, Smith, SK. Identification of mRNA for epidermal growth factor and transforming growth factor-α present in low copy number in human endometrium and decidua using reverse transcriptase-polymerase chain reaction. J Mol Endocrinol 1991; 6: 207–14.CrossRefGoogle ScholarPubMed
90 Mendoza, AE, Young, R, Orkin, SH, Collins, T. Increased platelet-derived growth factor A-chain expression in human uterine smooth muscle cells during the physiologic hypertrophy of pregnancy. Proc Natl Acad Sci USA 1990; 87: 2177–81.CrossRefGoogle ScholarPubMed
91 Chen, H-L, Yang, Y, Hu, XL, Yelavarthi, KK, Fishback, JL, Hung, JS. Tumor necrosis factor alpha mRNA and protein are present in human placental and uterine cells at early and late stages of gestation. Am J Pathol 1991; 139: 327–35.Google ScholarPubMed
92 Wolf, HK, Zarnegar, R, Oliver, L, Michalopoulos, GK. Hepatocyte growth factor in human placenta and trophoblastic disease. Am J Pathol 1991; 138: 1035–43.Google ScholarPubMed
93 Main, EK, Strizki, J, Schochet, P. Placental production of immunoregulatory factors. Trophoblast Res 1987; 2: 149–60.Google Scholar
94 Boehm, KD, Kelley, MF, Ilan, J, Ilan, J. The interleukin 2 gene is expressed in the syncytiotrophoblast of the human placenta. Proc Nad Acad Sci USA 1989; 86: 656–60.CrossRefGoogle ScholarPubMed
95 Kameda, T, Matsuzaki, N, Sawai, K et al. Production of interleukin-6 by normal human trophoblast. Placenta 1990; 11: 205–13.CrossRefGoogle ScholarPubMed
96 Fant, M, Munro, H, Moses, AC. An autocrine/ paracrine role for insulin-like growth factors in the regulation of human placental growth. J Clin Endocrinol Metab 1986; 63: 499505.Google ScholarPubMed
97 Wang, CY, Daimon, M, Shen, SJ, Engelmann, GL, Ilan, J. Insulin-like growth factor-1 messenger ribonucleic acid in the developing human placenta and in term placenta of diabetics. Mol Endocrinol 1988; 2: 217–29.CrossRefGoogle ScholarPubMed
98 Shen, SJ, Daimon, M, Wang, CY, Jansen, M, Ilan, J. Isolation of an insulin-like growth factor II cDNA with a unique 5' untranslated region from human placenta. Proc Natl Acad Sci USA 1988; 85 1947–51.CrossRefGoogle ScholarPubMed
99 Ohlsson, R, Holmgren, L, Glaser, A, Szpecht, A, Pfeifer-Ohlsson, S. Insulin-like growth factor 2 and short-range stimulatory loops in control of human placental growth. EMBO J 1989; 8: 1993–99.CrossRefGoogle ScholarPubMed
100 Chiu, ML, O'Keefe, EJ. Placental keratinocyte growth factor: partial purification and comparison with epidermal growth factor. Arch Biochem Biophys 1989; 269: 7585.CrossRefGoogle ScholarPubMed
101 Goustin, AS, Betscholtz, C, Pfeifer-Ohlsson, S et al. Coexpression of th. sis and myc proto-oncogenes in developing human placenta suggests autocrine control of trophoblast growth. Cell 1985; 41: 301–12.CrossRefGoogle Scholar
102 Goldstein, LD, Reynolds, CP, Perez-Ford, JR. Isolation of human NGF from placental tissues. Neurochem Res 1978; 3: 175–81.CrossRefGoogle Scholar
103 Frolik, CA, Dart, LL, Meyer, CA et al. Purification and initial characterization of a type β transforming growth factor from human placenta. Pro Natl Acad Sci USA 1983; 80: 3676–80.CrossRefGoogle ScholarPubMed
104 Sen-Majumdar, A, Murthy, U, Das, M. A new trophoblast derived growth factor from human placenta: purification and receptor identification. Biochemistry 1986; 25: 554–62.CrossRefGoogle ScholarPubMed
105 Gospodarowicz, D, Cheng, H, Lui, GM et al. Fibroblast growth factor in the human placenta. Biochem Biophys Res Commun 1985; 128: 554–62.CrossRefGoogle ScholarPubMed
106 Mauro, T, Mochizuki, M. Immunohistochemical localization of epidermal growth factor receptor and myc oncogene product in human placenta: implication for trophoblast proliferation and differentiation. Am J Obstet Gynecol 1987; 156: 721–27.CrossRefGoogle Scholar
107 Lai, WH, Guyda, HJ. Characterization and regulation of epidermal growth factor receptors in human placental cell cultures. J Clin Endocrinol Metab 1984; 58: 344–52.CrossRefGoogle ScholarPubMed
108 Chegini, N, Rao, CV, Wakim, N, Sanfilippo, J. Binding of 125I-epidermal growth factor in human uterus. Cell Tissue Res 1986; 246: 543–48.CrossRefGoogle ScholarPubMed
109 Scheffler, JE, Fleissner, LC, Seelig, GF, Nagabhushan, TL, Trotta, PP. Characterization of the human granulocyte-macrophage colony stimulating factor receptor from placenta. In: Clark, SC, Golde, DW eds. Hematopoiesis. New York: Wiley-Liss, 1990: 107–15.Google Scholar
110 Uzumaki, H, Okabe, T, Sasaki, N et al. Identification and characterization of receptors for granulocyte colony-stimulating factor in human placenta and trophoblastic cells. Proc Natl Acad Sci USA 1989; 86: 9323–26.CrossRefGoogle ScholarPubMed
111 Pollard, JW, Arceci, RJ, Bartocci, A, Stanley, ER. Colony stimulating factor-1: a growth factor for trophoblasts? In: Wegmann, TG, Gill, TJ III, Nisbet-Brown, E. Molecular and cellular immunobiology of the maternal-fetal interface. Oxford: Oxford University Press, 1991: 243–60.Google Scholar