Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-23T08:22:43.171Z Has data issue: false hasContentIssue false

Lie methods for color robot vision

Published online by Cambridge University Press:  01 July 2008

Reiner Lenz*
Affiliation:
Department of Science and Technology, Linköping University, Linköping 581 83, Sweden
*
*Corresponding author. E-mail: reiner.lenz@itn.liu.se

Summary

We describe how Lie-theoretical methods can be used to analyze color related problems in machine vision. The basic observation is that the nonnegative nature of spectral color signals restricts these functions to be members of a limited, conical section of the larger Hilbert space of square-integrable functions. From this observation, we conclude that the space of color signals can be equipped with a coordinate system consisting of a half-axis and a unit ball with the Lorentz groups as natural transformation group. We introduce the theory of the Lorentz group SU(1, 1) as a natural tool for analyzing color image processing problems and derive some descriptions and algorithms that are useful in the investigation of dynamical color changes. We illustrate the usage of these results by describing how to compress, interpolate, extrapolate, and compensate image sequences generated by dynamical color changes.

Type
Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gegenfurtner, K. R. and Kiper, D. C., “Color vision,” Annu. Rev. Neurosci. 26, 181206 (2003).CrossRefGoogle ScholarPubMed
2.Fairchild, M. D.. Color Appearance Models, 2nd ed. (Wiley – IS&T, Chichester, UK, 2005).Google Scholar
3.Brill, M. and West, G., “Group theory of chromatic adaptation,” Die Farbe 31 (1–3), 422 (1983/84).Google Scholar
4.Dodwell, P., “The Lie transformation group approach to visual perception,” Percept. Psychophys. 34, 116 (1983).CrossRefGoogle Scholar
5.Grassmann, H. G., “Zur Theorie der Farbenmischung,” Poggendorf's Annalen Physik Chemie, 80, 6984 (1853).CrossRefGoogle Scholar
6.Hoffman, W. C., “The Lie algebra of visual perception,” J. Math. Psychol. 3 (1), 6598 (1966).CrossRefGoogle Scholar
7.Hoffman, W. C., “Higher visual perception as prolongation of the basic Lie transformation group,” Math. Biosci. 6, 437471 (1970).CrossRefGoogle Scholar
8.Koenderink, J. J. and van Doorn, A. J., “The Structure of Colorimetry,” Proceedings of AFPAC, Springer Lecture Notes Computer Sci. Vol. 1888, Sept 10–12, 2000, Kiel Algebraic Frames for the Perception Action Cycle (AFPAC), Springer Berlin Heidelberg, 69–77 (2000).CrossRefGoogle Scholar
9.Resnikoff, H. L., “Differential geometry and color perception,” J. Math. Biol. 1, 97131 (1974).CrossRefGoogle Scholar
10.Schrödinger, E., “Grundlinien einer Theorie der Farbenmetrik im Tagessehen,” Ann. Phys. 63, 33132 (1920).Google Scholar
11.Schrödinger, E., “Theorie der Pigmente von größter Leuchtkraft,” Ann. Phys. 62, 1332 (1920).Google Scholar
12.Yilmaz, H.. On Color Perception, Vol. 20: International School Physics, Enrico Fermi (Academic Press, New York, 1962).Google Scholar
13.Lenz, R., “Spectral Color Spaces: Their Structure and Transformations,” In: Advances in Imaging and Electron Physics, Vol. 138 (Hawkes, P. W., ed.) (Elsevier, 2005) pp. 167.Google Scholar
14.Lenz, R., “Estimation of illumination characteristics. IEEE Trans. Image Processing 10 (7), 10311038 (2001).CrossRefGoogle ScholarPubMed
15.Lenz, R. and Bui, T. H., “Statistical properties of color-signal spaces,” J. Opt. Soc. Am. A 22 (5), 820827 (2005).CrossRefGoogle ScholarPubMed
16.Lenz, R. and Solli, M., “Lie Methods In Color Signal Processing: Illumination Effects,” Proceedings of the ICPR 2006, Hongkong (20–24 Aug 2006, IEEE Comp. Soc., Los Alamitos, 2006) pp. 738–741.Google Scholar
17.Dunford, N. and Schwartz, J. T.. Linear Operators, Vol. I–III (Wiley Interscience, New York, 1988).Google Scholar
18.Toland, J. F., “Self-adjoint operators and cones,” J. London Math. Soc.-Sec. Ser. 53, 167183 (1996).CrossRefGoogle Scholar
19.Nussbaum, R. D., “Eigenvectors of order-preserving linear operators,” J. London Math. Soc.-Second Ser. 58, 480496 (1998).CrossRefGoogle Scholar
20.Schäfer, H. H.. Topological Vector Spaces (Springer Verlag, New York, 1971).CrossRefGoogle Scholar
21.Gantmacher, F. R.. Matrizentheorie, 2nd ed. (Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1986).CrossRefGoogle Scholar
22.Benzschawel, T., Brill, M. H. and Cohn, T. E., “Analysis of human color mechanisms using sinusoidal spectral power distributions,” J. Opt. Soc. Am. A 3 (10), 17131725 (1986).CrossRefGoogle ScholarPubMed
23.Cohen, J., “Dependency of spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369370 (1964).CrossRefGoogle Scholar
24.Cohen, J. B. and Kappauf, W. E., “Metameric color stimuli, fundamental metamers, and Wyszecki's metameric blacks: theory, algebra, geometry, application,” Am. J. Psychol. 95, 537564 (1982).CrossRefGoogle Scholar
25.Cohen, J. B. and Kappauf, W. E., “Color mixture and fundamental metamers: theory, algebra, geometry, application,” Am. J. Psychol. 98, 171259 (1985).CrossRefGoogle Scholar
26.Maloney, L. T., “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3 (10), 16731683 (1986).CrossRefGoogle ScholarPubMed
27.Csurka, G. and Faugeras, O., “Algebraic and geometric tools to compute projective and permutation invariants,” IEEE Trans. Patt. Anal. Mach. Intell. 21 (1), 5865 (1999).CrossRefGoogle Scholar
28.Meer, P., Lenz, R. and Ramakrishna, S., “Efficient invariant representations,” Int. J. Comput. Vision 26 (2), 137152 (1998).CrossRefGoogle Scholar
29.Lehner, J., Discontinuous Groups and Automorphic Functions (American Mathematical Society, Providence, Rhode Island, USA, 1964).CrossRefGoogle Scholar
30.Siegel, C. L.. Topics in Complex Function Theory, Automorphic Functions and Abelian Integrals (Wiley Interscience, New York, 1971).Google Scholar
31.Mumford, D., Series, C. and Wright, D.. Indra's Pearls: The Vision of Felix Klein (Cambridge University Press, New York, 2002).CrossRefGoogle Scholar
32.Wyszecki, G. and Stiles, W. S.. Color Science, 2nd ed. (Wiley & Sons, London, UK, 1982).Google Scholar
33.Parkkinen, J. P. S., Hallikainen, J. and Jaaskelainen, T., “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6 (2), 318–22 (1989).CrossRefGoogle Scholar
34.Nascimento, S. M. C., Ferreira, F. P. and Foster, D. H., “Statistics of spatial cone-excitation ratios in natural scenes,” J. Opt. Soc. Am. A 19 (8), 14841490 (2002).CrossRefGoogle ScholarPubMed
35.Solli, M., Andersson, M., Lenz, R. and Kruse, B., “Color Measurements with a Consumer Digital Camera Using Spectral Estimation Techniques,” Proceedings of the SCIA 2005, Springer Lecture Notes Comp. Science Vol. 3540, Image Analysis June 19–22, 2005, Joeusum, Finland pp. 105–114.Google Scholar
36.Lenz, R., Bui, T. H. and Hernandez-Andres, J., “Group theoretical structure of spectral spaces,” J. Math. Imaging Vision 23 (3), 297313 (2005).CrossRefGoogle Scholar