Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-17T23:52:55.764Z Has data issue: false hasContentIssue false

Real-time adaptive super twisting algorithm based on PSO algorithm: application for an exoskeleton robot

Published online by Cambridge University Press:  24 April 2024

Hichame Tiaiba*
Affiliation:
Laboratoire d’Electronique et des Telecommunications Avancees, Universite Mohamed El Bachir El Ibrahimi de Bordj Bou-Arreridj, El-Anasser, Algerie
Mohamed El Hossine Daachi
Affiliation:
Laboratoire d’Electronique et des Telecommunications Avancees, Universite Mohamed El Bachir El Ibrahimi de Bordj Bou-Arreridj, El-Anasser, Algerie
Tarek Madani
Affiliation:
Laboratoire Images, Signaux et Systemes Intelligents, Universite Paris-Est Creteil, Vitry sur Seine, France
*
Corresponding author: Hichame Tiaiba; Email: hichame.tiaiba@univ-bba.dz

Abstract

In this paper, an online adaptive super twisting sliding mode controller is proposed for a non-linear system. The adaptive controller has been designed in order to deal with the unknown dynamic uncertainties and give the best trajectory tracking. The adaptation is based on an optimal Particle Swarm Optimization (PSO) algorithm whose goal is online tuning the parameters through focusing on decreasing the objective function. The novelty of this study is online handling parameters setting in the conventional super twisting algorithm, bypass heavy offline calculation, and also avoid the instability and abrupt changing of the controller’s parameters for better actuators lifetime. This novel approach has been applied on an upper limb exoskeleton robot for arm rehabilitation. Despite the changes of the dynamic model of the system which defers from one patient to another due to the direct interactions between the wearer and the exoskeleton, this control technique preserves its robustness with respect to bounded external disturbances. The effectiveness of the proposed adaptive controller has been proved in simulation and then in real-time experiment with two human subjects. A comparison between the proposed approach and classic super twisting algorithm has been conducted. The obtained results show the performance and efficiency of the proposed controller.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jebri, A., Madani, T., Djouani, K. and Benallegue, A., “Robust adaptive neuronal controller for exoskeletons with sliding-mode,” Neurocomputing 399, 317330 (2020).CrossRefGoogle Scholar
Jellali, A., Madani, T., Khraief, N. and Belghith, S., “Non-Singular Terminal Sliding Mode Controller in Cartesian Space: Application to an Upper Limb Exoskeleton,” In: 2023 21st International Conference on Advanced Robotics (ICAR), (IEEE, 2023) pp. 558563.CrossRefGoogle Scholar
Riani, A., Madani, T., Benallegue, A. and Djouani, K., “Adaptive integral terminal sliding mode control for upper-limb rehabilitation exoskeleton,” Control Eng Pract 75, 108117 (2018).CrossRefGoogle Scholar
Daachi, M. E., Madani, T., Daachi, B. and Djouani, K., “A radial basis function neural network adaptive controller to drive a powered lower limb knee joint orthosis,” Appl Soft Comput 34, 324336 (2015).CrossRefGoogle Scholar
Onose, G., Cârdei, V., Crăciunoiu, Ş.T., Avramescu, V., Opriş, I., Lebedev, M. A. and Constantinescu, M. V., “Mechatronic wearable exoskeletons for bionic bipedal standing and walking: A new synthetic approach,” Front Neurosci 10, 343 (2016).CrossRefGoogle ScholarPubMed
Proud, J. K., Lai, D. T. H., Mudie, K. L., Carstairs, G. L., Billing, D. C., Garofolini, A. and Begg, R. K., “Exoskeleton application to military manual handling tasks,” Hum Factors 64(3), 527554 (2022).CrossRefGoogle ScholarPubMed
Yuan, P., Wang, T., Ma, F. and Gong, M., “Key Technologies and Prospects of Individual Combat Exoskeleton,” In: Knowledge Engineering and Management, (Springer, 2014) pp. 305316.CrossRefGoogle Scholar
Islam, M. R., Rahmani, M. and Rahman, M. H., “A novel exoskeleton with fractional sliding mode control for upper limb rehabilitation,” Robotica 38(11), 20992120 (2020).CrossRefGoogle Scholar
Wu, Q., Wang, X., Chen, B. and Wu, H., “Development of an RBFN-based neural-fuzzy adaptive control strategy for an upper limb rehabilitation exoskeleton,” Mechatronics 53, 8594 (2018).CrossRefGoogle Scholar
Achili, B., Madani, T., Daachi, B. and Djouani, K., “Adaptive observer based on MLPNN and sliding mode for wearable robots: Application to an active joint orthosis,” Neurocomputing 197, 6977 (2016).CrossRefGoogle Scholar
Huang, X., Naghdy, F., Du, H., Naghdy, G. and Todd, C., “Reinforcement Learning Neural Network (rlnn) based Adaptive Control of Fine Hand Motion Rehabilitation Robot,” In: 2015 IEEE Conference on Control Applications (CCA), (IEEE, 2015) pp. 941946.CrossRefGoogle Scholar
He, W., Ge, S. S., Li, Y., Chew, E. and Ng, Y. S., “Neural network control of a rehabilitation robot by state and output feedback,” J Intell Robot Syst 80(1), 1531 (2015).CrossRefGoogle Scholar
Belkadi, A., Oulhadj, H., Touati, Y., Khan, S. A. and Daachi, B., “On the robust PID adaptive controller for exoskeletons: A particle swarm optimization based approach,” Appl Soft Comput 60, 87100 (2017).CrossRefGoogle Scholar
Chacko, S., Bhende, C. N., Jain, S. and Nema, R. K., “Pso based Online Tuning of pi Controller for Estimation of Rotor Resistance of Indirect Vector Controlled Induction Motor Drive,” In: 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), (IEEE, 2016) pp. 46064611.CrossRefGoogle Scholar
Chen, P.-L., Yang, M.-C. and Sun, T.-Y., “Pso-Based On-Line Tuning Pid Controller for Setpoint Changes and Load Disturbance,” In: 2011 IEEE Congress of Evolutionary Computation (CEC), (IEEE, 2011) pp. 18871894.CrossRefGoogle Scholar
Khoshdel, V., Akbarzadeh, A., Naghavi, N., Sharifnezhad, A. and Souzanchi-Kashani, M., “Semg-based impedance control for lower-limb rehabilitation robot,” Intel Serv Robot 11(1), 97108 (2018).CrossRefGoogle Scholar
Teramae, T., Noda, T. and Morimoto, J., “Emg-based model predictive control for physical human–robot interaction: Application for assist-as-needed control,” IEEE Robot Automa Lett 3(1), 210217 (2018).CrossRefGoogle Scholar
Li, Z., Wang, B., Sun, F., Yang, C., Xie, Q. and Zhang, W., “sEMG-based joint force control for an upper-limb power-assist exoskeleton robot,” IEEE J Biomed Health 18(3), 10431050 (2013).Google ScholarPubMed
Su, H., Li, Z., Li, G. and Yang, C., “Emg-based Neural Network Control of an Upper-Limb Power-Assist Exoskeleton Robot,” In: International Symposium on Neural Networks, (Springer, 2013) pp. 204211.CrossRefGoogle Scholar
Tsai, B.-C., Wang, W.-W., Hsu, L.-C., Fu, L.-C. and Lai, J.-S., “An Articulated Rehabilitation Robot for Upper Limb Physiotherapy and Training,” In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, (IEEE, 2010) pp. 14701475.CrossRefGoogle Scholar
Proietti, T., Crocher, V., Roby-Brami, A. and Jarrasse, N., “Upper-limb robotic exoskeletons for neurorehabilitation: A review on control strategies,” IEEE Rev Biomed Eng 9, 414 (2016).CrossRefGoogle ScholarPubMed
Jian, S., Zhitao, L. and Hongye, S., “A Second-Order Sliding Mode Control Design for Bidirectional dcdc Converter,” In: 2017 36th Chinese Control Conference (CCC), (IEEE, 2017) pp. 91819186.CrossRefGoogle Scholar
Chiew, T., Jamaludin, Z., Hashim, A., Abdullah, L., Rafan, N. and Maharof, M., “Second order sliding mode control for direct drive positioning system,” J Mech Eng Sci 11(4), 32063216 (2017).CrossRefGoogle Scholar
Mahjoub, S., Mnif, F. and Derbel, N., “Second-order sliding mode approaches for the control of a class of underactuated systems,” Int J Autom Comp 12(2), 134141 (2015).CrossRefGoogle Scholar
Zheng, Y., Liu, J., Liu, X., Fang, D. and Wu, L., “Adaptive second-order sliding mode control design for a class of nonlinear systems with unknown input,” Math Probl Eng 2015, 17 (2015).Google Scholar
Imine, H. and Madani, T., “Sliding-mode control for automated lane guidance of heavy vehicle,” Int J Robust Nonlin Cont 23(1), 6776 (2013).CrossRefGoogle Scholar
Imine, H., Fridman, L. M. and Madani, T., “Steering control for rollover avoidance of heavy vehicles,” IEEE Trans Veh Technol 61(8), 34993509 (2012).CrossRefGoogle Scholar
Gülbaş, Ö., Hameş, Y. and Furat, M., “Comparison of Pi and Super-Twisting Controller Optimized with Sca and Pso for Speed Control of Bldc Motor,” In: 2020 International Congress On Human-Computer Interaction, Optimization and Robotic Applications (HORA), (IEEE, 2020) pp. 17.CrossRefGoogle Scholar
Mokhtari, M., Taghizadeh, M. and Mazare, M., “Impedance control based on optimal adaptive high order super twisting sliding mode for a 7-dof lower limb exoskeleton,” Meccanica 56(3), 535548 (2021).CrossRefGoogle Scholar
Faraj, M. A., Maalej, B., Derbel, N., Naifar, O. and Rossomando, F., “Adaptive fractional-order super-twisting sliding mode controller for lower limb rehabilitation exoskeleton in constraint circumstances based on the grey wolf optimization algorithm,” Math Probl Eng 2023, 132 (2023).CrossRefGoogle Scholar
Oliveira, T. R., Costa, L. R., Catunda, J. M. Y., Pino, A. V., Barbosa, W. and de Souza, M. N., “Time-scaling based sliding mode control for neuromuscular electrical stimulation under uncertain relative degrees,” Med Eng Phys 44, 5362 (2017).CrossRefGoogle ScholarPubMed
Paz, P., Oliveira, T. R., Pino, A. V. and Fontana, A. P., “Model-free neuromuscular electrical stimulation by stochastic extremum seeking,” IEEE Trans Contr Syst Tech 28(1), 238253 (2019).CrossRefGoogle Scholar
Moreno, J. A., “A Linear Framework for the Robust Stability Analysis of a Generalized Super-Twisting Algorithm,” In: 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), (IEEE, 2009) pp. 16.CrossRefGoogle Scholar
Derafa, L., Benallegue, A. and Fridman, L., “Super twisting control algorithm for the attitude tracking of a four rotors UAV,” J Frankl Inst 349(2), 685699 (2012).CrossRefGoogle Scholar
Dávila, A., Moreno, J. A. and Fridman, L., “Optimal Lyapunov Function Selection for Reaching Time Estimation of Super Twisting Algorithm,” In: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, (IEEE, 2009) pp. 84058410.CrossRefGoogle Scholar
Moreno, J. A. and Osorio, M., “A Lyapunov Approach to Second-Order Sliding Mode Controllers and Observers,” In: 2008 47th IEEE conference on decision and control, (IEEE, 2008) pp. 28562861.CrossRefGoogle Scholar
Kennedy, J. and Eberhart, R., “Particle Swarm Optimization,” In: Proceedings of ICNN’95 - International Conference on Neural Networks, (IEEE, 1995) pp. 19421948.Google Scholar
Dang, T. L. and Hoshino, Y., “Improved pso algorithm for training of neural network in co-design architecture,” Int J Comp Appl 975, 8887 (2019).Google Scholar
Riani, A., Control and Observation of Exoskeletons for Upper Limb Functional Rehabilitation (University of Paris-Saclay, France, (2018). Ph.D. dissertationGoogle Scholar
Boyd, S., Ghaoui, L. E., Feron, E. and Balakrishnan, V., “Linear matrix inequalities in system and control theory,” In: SIAM, (1994).Google Scholar