Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-29T07:46:34.273Z Has data issue: false hasContentIssue false

Stabilization and tracking control of an x-z type inverted pendulum system using Lightning Search Algorithm tuned nonlinear PID controller

Published online by Cambridge University Press:  02 December 2021

Nurhan Gürsel Özmen*
Affiliation:
Karadeniz Technical University, Department of Mechanical Engineering, 61080 Trabzon, Turkey
Musa Marul
Affiliation:
Artvin Çoruh University, Borçka Acarlar Vocational School, Department of Electronics and Automation, Artvin, Turkey
*
*Corresponding author. E-mail: gnurhan@ktu.edu.tr

Abstract

Inverted pendulum systems (IPSs) are mostly used to demonstrate the control rules for keeping the pendulum at a balanced upright position due to a slight force applied to the cart system. This paper presents an application for nonlinear control of an x-z type IPS by using a proportional-integral-derivative (PID) controller with newly established evolutionary tuning method Lightning Search Algorithm (LSA). A single, double and triple PID controller system is tested with the conventional and the self-tuning controllers to get a better understanding of the performance of the given system. The mathematical modelling of the x-z type IPS, the theoretical explanation of the LSA and the simulation analysis of the x-z type IPS is put forward entirely. The LSA algorithm solves the optimization problem of PID controller in an evolutionary way. The most effective way of making comparisons is evaluating the performance results with a well-known optimization technique or with the previous accepted results. We have compared the system’s performance with particle swarm optimization and with a classical control study in the literature. According to the simulation results, LSA-tuned PID controller has the ability to decrease the overshoot better than the conventional-tuned controllers. Finally, it can be concluded that the LSA-supported PID can better stabilize the pendulum angle and track the reference better for non-disturbed and the slightly disturbed systems.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boubaker, O., “The inverted pendulum benchmark in nonlinear control theory: A survey,” Int. J. Adv. Rob. Syst. 10(5), 233 (2013).CrossRefGoogle Scholar
Vigentini, M., Ghidelli, M. and Martinelli, S., U.S. Patent No. 10,258,521. Washington, DC: U.S. Patent and Trademark Office (2019).Google Scholar
Engelhart, D., Schouten, A. C., Aarts, R. G. and van der Kooij, H., “Assessment of multi-joint coordination and adaptation in standing balance: A novel device and system identification technique,” IEEE Trans. Neural Syst. Rehabil. Eng. 23(6), 973982 (2014).10.1109/TNSRE.2014.2372172CrossRefGoogle ScholarPubMed
Zielinska, T., Rivera Coba, G. and Ge, W., “Variable inverted pendulum applied to humanoid motion design,” Robotica, 1–22 (2021) doi: 10.1017/S0263574720001228.CrossRefGoogle Scholar
Benrejeb, W. and Boubaker, O., “FPGA modeling and realtime embedded control design via LabVIEW software: Application for swinging-up a pendulum,” Int. J. Smart Sens. Intell. Syst. 5(3), 576591 (2012)Google Scholar
Sánchez, J., Morilla, F. and Dormido, S., “Teleoperation on an Inverted Pendulum Through the World Wide Web” Proceedings of the IFAC Workshop on Internet Based Control Education, Madrid (2001) pp. 3742.Google Scholar
Gillet, D., Salzmann, C. and Huguenin, P., “A Distributed Architecture for Teleoperation over the Internet with Application to the Remote Control of an Inverted Pendulum,” In: Nonlinear Control in the Year 2000, vol. 258 (Springer, London, 2001) pp. 399407.Google Scholar
Sánchez, J., Morilla, F., Pastor, R. and Dormido, S., “A Java/Matlab-based environment for remote control system laboratories: Illustrated with an inverted pendulum,” IEEE Trans. Edu. 47(3), 321329 (2004)CrossRefGoogle Scholar
Yao, Y., Dai, Y., Tian, D. and Zhang, X., “MATALB & Internet Based Remote Control Laboratory,” Proceedings of the Chinese Control and Decision Conference, Guilin (2009) pp. 12621268.Google Scholar
Dini, N. and Majd, V. J., “An MPC-based two-dimensional push recovery of a quadruped robot in trotting gait using its reduced virtual model,” Mech. Mach. Theory 146, 103737 (2020) https://doi.org/10.1016/j.mechmachtheory.2019.103737.CrossRefGoogle Scholar
Boubaker, O. and Iriarte, R., The Inverted Pendulum in Control Theory and Robotics, 1st ed. (IET, 2017) ISBN: 978-1-78561-320-3. doi: 10.1049/PBCE111E.CrossRefGoogle Scholar
Ogata, K., Modern Control Engineering, 4th ed. (Pearson Education, New Delhi; Singapore Pvt. Ltd., 2005).Google Scholar
Bradshaw, A. and Shao, J., “Swing-up control of inverted pendulum systems,” Robotica 14(4), 397405 (1996) doi: 10.1017/S0263574700019792.CrossRefGoogle Scholar
Moysis, L., Balancing a double inverted pendulum using optimal control and Laguerre functions. Aristotle University of Thessaloniki, Greece, 54124 (2016).Google Scholar
Furuta, K., Ochiai, T. and Ono, N., “Attitude control of a triple inverted pendulum,” Int. J. Control 39(6), 13511365 (1984).CrossRefGoogle Scholar
Zhang, X. L., Fan, H. M., Zang, J. Y., Zhao, L. and Hao, S., “Nonlinear control of triple inverted pendulum based on GA–PIDNN,” Nonlinear Dyn. 79(2), 11851194 (2015).CrossRefGoogle Scholar
Li, H., Miao, Z. and Wang, J., “Variable universe adaptive fuzzy control on the quadruple inverted pendulum,” Sci. China Ser. E Technol. Sci. 45(2), 213224 (2002).10.1360/02ye9026CrossRefGoogle Scholar
Shen, J., Sanyal, A. K., Chaturvedi, N. A., Bernstein, D. and McClamroch, H., “Dynamics and Control of a 3D Pendulum,” Proceedings of the 43rd IEEE Conference on Decision and Control, Nassau, vol. 1 (2004) pp. 323328.Google Scholar
Sakka, S., Hayot, C. and Lacouture, P., “A Generalized 3D Inverted Pendulum Model to Represent Human Normal Walking,10th IEEE-RAS International Conference on Humanoid Robots (IEEE, 2010) pp. 486491.Google Scholar
Maravall, D., Zhou, C. and Alonso, J., “Hybrid fuzzy control of the inverted pendulum via vertical forces,” Int. J. Intell. Syst. 20(2), 195211 (2005).CrossRefGoogle Scholar
Maravall, D., “Control and Stabilization of the Inverted Pendulum Via Vertical Forces,” In: Robotic Welding, Intelligence and Automation, Lecture Notes in Control and Information Sciences (Tarn, T. J., Chen, S. B. and Zhou, C., eds.), vol. 299 (Springer-Verlag, Berlin, 2004) pp. 190211.Google Scholar
Wang, J. J., “Simulation studies of inverted pendulum based on PID controllers,” Simul. Model. Pract. Theory 19(1), 440449 (2011) https://doi.org/10.1016/j.simpat.2010.08.003.CrossRefGoogle Scholar
Prasad, L. B., Tyagi, B. and Gupta, H. O., “Optimal control of nonlinear inverted pendulum system using PID controller and LQR: Performance analysis without and with disturbance input,” Int. J. Autom. Comput. 11(6), 661670 (2014) doi: 10.1007/s11633-014-0818-1.CrossRefGoogle Scholar
Rong-Jong, W. and Li-Jung, C., “Adaptive stabilizing and tracking control for a nonlinear inverted-pendulum system via sliding-mode technique,” IEEE Trans. Ind. Electron. 53(2), 674692 (2006) doi: 10.1109/TIE.2006.870680.CrossRefGoogle Scholar
Rigatos, G., Busawon, K., Pomares, J. and Abbaszadeh, M., “Nonlinear optimal control for the wheeled inverted pendulum system,” Robotica 38(1), 2947 (2020) doi: 10.1017/S0263574719000456.CrossRefGoogle Scholar
Kalayci, M. B. and Yiğit, İ., “Theoretical and experimental investigation of some sliding mode control techniques used in practice,” J. Fac. Eng. Archit. Gazi Univ. 30(1), 131142 (2015).Google Scholar
Marzi, H., “Multi-Input Fuzzy control of an inverted pendulum using an armature controlled DC motor,” Robotica 23(06), 785788 (2005) Cambridge University Press.CrossRefGoogle Scholar
Yamakawa, T., “Stabilization of an inverted pendulum by a high speed fuzzy logic controller hardware system,” Fuzzy Sets Syst. 32, 161180 (1989).CrossRefGoogle Scholar
Tao, C. W., Taur, J. S., Wang, C. M. and Chen, U. S., “Fuzzy hierarchical swing-up and sliding position controller for the inverted pendulum-cart system,” Fuzzy Sets Syst. 159(20), 27632784 (2008).CrossRefGoogle Scholar
Anderson, C. W., “Learning to control an inverted pendulum using neural networks,” IEEE Control Syst. Mag. 9(3), 3137 (1989).CrossRefGoogle Scholar
Lakie, M., Caplan, C. and Loram, I. D., “Human balancing of an inverted pendulum with a compliant linkage: neural control by anticipatory intermittent bias,” J. Physiol. 551(1), 357370 (2003).CrossRefGoogle ScholarPubMed
Yang, C., Li, Z., Cui, R. and Xu, B., “Neural network-based motion control of an underactuated wheeled inverted pendulum model,” IEEE Trans. Neural Networks Learn. Syst. 25(11), 20042016 (2014).10.1109/TNNLS.2014.2302475CrossRefGoogle ScholarPubMed
Daley, S. and Liu, G. P., “Optimal PID tuning using direct search algorithms,” Comput. Control Eng. J. 10(2), 5156 (1999).CrossRefGoogle Scholar
Ted Su, H. and Samad, T., “Neuro-Control Design: Optimization Aspects,” In: Neural Systems for Control (Omidvar, O. and Elliott, D. L., eds.), Chapter 10 (Academic Press, 1997) https://doi.org/10.1016/B978-012526430-3/50011-8.CrossRefGoogle Scholar
Diveev, A. and Shmalko, E., “Machine-made synthesis of stabilization system by modified cartesian genetic programming,” IEEE Trans. Cybern. 1–11 (2020) doi: 10.1109/TCYB.2020.3039693.CrossRefGoogle Scholar
Ye, N., Roosta-Khorasani, F. and Cui, T., “Optimization Methods for Inverse Problems,” In: 2017 MATRIX Annals. MATRIX Book Series (Wood, D., de Gier, J., Praeger, C. and Tao, T., eds.), vol. 2 (Springer, Cham, 2019) https://doi.org/10.1007/978-3-030-04161-8_9.Google Scholar
Dereli, S. and Köker, R., “Calculation of the inverse kinematics solution of the 7-DOF redundant robot manipulator by the firefly algorithm and statistical analysis of the results in terms of speed and accuracy,” Inverse Probl. Sci. Eng. 28(5), 601613 (2020) doi: 10.1080/17415977.2019.1602124.CrossRefGoogle Scholar
Chakraborty, K., Mukherjee, R. R. and Mukherjee, S., “Tuning of PID controller of inverted pendulum using genetic algorithm,” Int. J. Soft Comput. Eng. (IJSCE) 3(1), 2124 (2013).Google Scholar
Gupta, A. and Srivastava, S., “Comparative analysis of ant colony and particle swarm optimization algorithms for distance optimization”, Procedia Comput. Sci. 173, 245253 (2020).CrossRefGoogle Scholar
Bharadwaj, C. S., Babu, T. S. and Rajasekar, N., “Tuning PID Controller for Inverted Pendulum Using Genetic Algorithm,” In: Advances in Systems, Control and Automation (Springer, Singapore, 2018) pp. 395404.CrossRefGoogle Scholar
Banks, A., Vincent, J. and Anyakoha, C., “A review of particle swarm optimization. Part I: Background and development,” Natl. Comput. 6, 467484 (2007) https://doi.org/10.1007/s11047-007-9049-5.CrossRefGoogle Scholar
Banks, A., Vincent, J. and Anyakoha, C., “A review of particle swarm optimization. Part II: Hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications,” Natl. Comput. 7, 109124 (2008) https://doi.org/10.1007/s11047-007-9050-z.CrossRefGoogle Scholar
Hanafy, T. O., “Stabilization of Inverted Pendulum System Using Particle Swarm Optimization,” 8th International Conference on Informatics and Systems (INFOS) (BIO-207) (IEEE, 2012).Google Scholar
Mousa, M. E., Ebrahim, M. A. and Hassan, M. M., “Stabilizing and swinging-up the inverted pendulum using PI and PID controllers based on reduced linear quadratic regulator tuned by PSO,” Int. J. Syst. Dyn. Appl. (IJSDA) 4(4), 5269 (2015).Google Scholar
Valluru, S. K. and Singh Chadli, M., (Reviewing Editor), “Stabilization of nonlinear inverted pendulum system using MOGA and APSO tuned nonlinear PID controller,” Cogent Eng. 4(1) (2017) doi: 10.1080/23311916.2017.1357314.CrossRefGoogle Scholar
Chegini, S. N., Bagheri, A. and Najafi, F., “PSOSCALF: A new hybrid PSO based on Sine Cosine Algorithm and Levy flight for solving optimization problems,” Appl. Soft Comput. 73, 697726 (2018).CrossRefGoogle Scholar
Chegini, S. N., Bagheri, A. and Najafi, F., “A new adjusting technique for PID type fuzzy logic controller using PSOSCALF optimization algorithm,” Appl. Soft Comput. 85, 105822 (2019).Google Scholar
Yan, G. and Li, C., “An effective refinement artificial bee colony optimization algorithm based on chaotic search and application for PID control tuning,” J. Comput. Inf. Syst. 7(9), 33093316 (2011).Google Scholar
Caraveo, C., Valdez, F. and Castillo, O., “Optimization of fuzzy controller design using a new bee colony algorithm with fuzzy dynamic parameter adaptation,” Appl. Soft Comput. 43, 131142 (2016).CrossRefGoogle Scholar
Puangdownreong, D. and Sukulin, A., “Obtaining an optimum PID controllers for unstable systems using current search,” Int. J. Syst. Eng. Appl. Dev. 6(2), 188195 (2012).Google Scholar
Jacknoon, A. and Abido, M. A., “Ant Colony Based LQR and PID Tuned Parameters for Controlling Inverted Pendulum,” International Conference on Communication, Control, Computing and Electronics Engineering (ICCCCEE) (IEEE, 2017) pp. 18.CrossRefGoogle Scholar
Mohammed, S., Faycel, K. M. and Rochdi, B. B., “Statistical analysis of harmony search algorithms in tuning PID controller,” Int. J. Intell. Eng. Syst. 9(4), 98106 (2016).Google Scholar
Arulanand, N. and Dhara, P., “Optimizing PID parameters using harmony search,” Int. J. Mech. Mechatron. Eng. 9(4), 667672 (2015).Google Scholar
Wang, J. J., “Stabilization and tracking control of X–Z inverted pendulum with sliding-mode control,” ISA Trans. 51(6), 763770 (2012).CrossRefGoogle ScholarPubMed
Wang, J. J. and Kumbasar, T., “Big Bang-Big Crunch optimized hierarchical sliding-mode control of X-Z inverted pendulum,” Simul. Model. Pract. Theory 86(August 2018), 2535 (2018).CrossRefGoogle Scholar
Wang, J. J. and Liu, G. Y., “Hierarchical sliding-mode control of spatial inverted pendulum with heterogeneous comprehensive learning particle swarm optimization,” Inf. Sci. 495(9), 1436 (2019).CrossRefGoogle Scholar
Su, Y. X and Dong Sun, B. Y. D., “Design of an enhanced nonlinear PID controller,” Mechatronics 15, 10051024 (2005) https://doi.org/10.1016/j.mechatronics.2005.03.003.CrossRefGoogle Scholar
Shareef, H., Ibrahim, A. and Mutlag, A. H., “Lightning search algorithm,” Appl. Soft Comput. 36, 315333 (2015) https://doi.org/10.1016/j.asoc.2015.07.028.CrossRefGoogle Scholar
Asvany, T., Amudhavel, J. and Sujatha, P., “Lightning search algorithm for solving coverage problem in wireless sensor network,” Adv. Appl. Math. Sci. 17(1), 113127 (2017).Google Scholar
Abualigah, L., Elaziz, M. A., Hussien, A. G., Alsalibi, B., Jalali, S. M. J. and Gandomi, A. H., “Lightning search algorithm: A comprehensive survey,” Appl. Intell. 51(4) (2020) https://doi.org/10.1007/s10489-020-01947-2.Google Scholar
Sarker, M. R., Mohamed, R., Saad, M. H. M. and Mohamed, A., “dSPACE controller-based enhanced piezoelectric energy harvesting system using PI-lightning search algorithm,” IEEE Access 7, 36103626 (2019) doi: 10.1109/ACCESS.2018.2888912.CrossRefGoogle Scholar
Gao, W., Zhao, Y. and Zhang, Y., “Optimal Design of Fractional Order PID Controller Using Lightning Search Algorithm,” EITCE, China (2020) pp. 68. https://doi.org/10.1145/3443467.3443851.CrossRefGoogle Scholar