Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-09T00:10:36.297Z Has data issue: false hasContentIssue false

Mass-Energy and the Neutron in the Early Thirties

Published online by Cambridge University Press:  26 September 2008

Roger H. Stuewer
Affiliation:
Program in the History of Science and Technology and School of Physics and Astronomy, University of Minnesota

Abstract

Einstein's mass-energy relationship was not confirmed experimentally until 1933 when Bainbridge showed that the Cockcroft-Walton experiment afforded a test of it. Earlier, however, it had been used constantly in the analysis of nuclear reactions, as can be seen in those involved in the determination of the mass of the neutron. Chadwick in 1932 was convinced that the neutron mass was about 1.0067 amu (atomic mass units), indicating that the neutron was a proton-electron compound, since that figure was less than the sum of the proton and electron masses. Chadwick's value was challenged in 1933 by Lawrence, who proposed a much lower value of 1.0006 amu, and by Curie and Joliot, who proposed a much higher value of 1.011 amu.Much controversy ensued; eventually, Chadwick and Goldhaber showed in 1934 that the neutron mass was about 1.0080 amu, greater than the sum of the proton and electron masses, proving that the neutron was a new elementary particle (which could decay spontaneously), and providing conclusive experimental support for excluding electrons from the nucleus. These results remained unchanged with further refinements in the last decimal place, the entire pursuit of which provided still further vindication of Einstein's massenergy relationship.

Type
The Experimental Context
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, Luis W. 1970. “Ernest Orlando Lawrence, August 1, 1901–August 27, 1958.” Nat. Acad. Sci. Biog. Mem. 41: 251–94.Google Scholar
Anderson, Carl D. 1932. “The Apparent Existence of Easily Deflectable Positives.” Science 76: 238–39.CrossRefGoogle ScholarPubMed
Anderson, Carl D. [1933.] 1949. “The Positive Electron.” Phys. Rev. 43: 491–94. Reprinted in Beyer 1949, 1–4.CrossRefGoogle Scholar
Aston, F. W. 1922. Isotopes. London: Edward Arnold.Google Scholar
Aston, F. W. 1933. Mass-Spectra and Isotopes. London: Edward Arnold.Google Scholar
Aston, F. W. 1935a. “Masses of some Light Atoms determined by a New Method.” Nature 135:541.Google Scholar
Aston, F. W. 1935b. “The Story of Isotopes.” Science 82: 235–40.Google Scholar
Aston, F. W. 1942. Mass Spectra and Isotopes, 2nd edition. London: Edward Arnold.Google Scholar
Bainbridge, K. T. 1931. “The Isotopes of Lithium, Sodium, and Potassium.” J. Franklin Inst. 212: 317–39.Google Scholar
Bainbridge, K. T. 1932. “A mass-spectrograph [Abstract].” Phys. Rev. 40: 130.Google Scholar
Bainbridge, K. T. 1933a. “The Equivalence of Mass and Energy.” Phys. Rev. 44: 123.CrossRefGoogle Scholar
Bainbridge, K. T. 1933b. “The Masses of Atoms and the Structure of Atomic Nuclei.” J. Franklin Inst. 215: 509–34.Google Scholar
Bainbridge, K. T. 1953. “Charged Particle Dynamics and Optics, Relative Isotopic Abundances of the Elements, Atomic Masses.” In Experimental Nuclear Physics, edited by Segrè, E., Vol. 1, 559766. New York: Wiley; London: Chapman & Hall.Google Scholar
Bethe, H. A. 1935. “Masses of Light Atoms from Transmutation Data.” Phys. Rev. 47: 633–34.CrossRefGoogle Scholar
Bethe, H. A. 1938. “The Binding Energy of the Deuteron.” Phys. Rev. 53: 313–14.Google Scholar
Beyer, Robert T., ed. 1949. Foundations of Nuclear Physics: Facsimiles of Thirteen Fundamental Studies as They Were Originally Reported in the Scient Journals. New York: Dover.Google Scholar
Birge, R. T., and Menzel, D. H.. 1931. “The Relative Abundance of the Oxygen Isotopes, and the Basis of the Atomic Weight System.” Phys. Rev. 37: 1669–71.Google Scholar
Blackett, P. M. S. 1925. “The Ejection of Protons from Nitrogen Nuclei, Photographed by the Wilson Method.” Proc. Roy. Soc. [A] 107: 349–60.Google Scholar
Neils, Bohr, [1932] 1986. “On the properties of the neutron.” Unpublished MS dated 25 April 1932. Printed in Bohr 1986, 9:117–18.Google Scholar
Neils, Bohr [1933] 1986. “The electron and the proton.” Unpublished MS. Printed in Bohr 1986, 9:125–27.Google Scholar
Niels, Bohr [1936] 1986. “Neutron Capture and Nuclear Constitution.” Nature 137: 344–48. Reprinted in Bohr 1986, 9:152–56.Google Scholar
Neils, Bohr 1986. Niels Bohr Collected Works. Vol.9, Nuclear Physics (1929–1952), edited by SirPeierls, Rudolf. Amsterdam: North-Holland.Google Scholar
Bothe, W. 1933. “Das Neutron und das Positron.” Naturwiss. 21: 825–831.CrossRefGoogle Scholar
Bothe, W., and Becker, H.. 1930. “Künstliche Erregung von Kern-γ-Strahlen.” Z. Phys. 66: 289–306.Google Scholar
Braddick, H. J. J. 1936. “Radioactivity and Sub-Atomic Phenomena.” Annual Rept. Prog. Chem. 1935 33: 1535.Google Scholar
Braunbek, Werner 1932Über Massendefekt und Bindungsenergie des Neu trons.” Z. Phys. 77: 534–40.CrossRefGoogle Scholar
Braunbek, Werner 1937. “Die empirische Genauigkeit des Mass-Energie-Verhältnisses.” Z. Phys. 107: 111.CrossRefGoogle Scholar
Brickwedde, Ferdinand G. 1982. “Harold Urey and the discovery of deuterium.” Physics Today 35 (September): 3439.Google Scholar
CC: See Cockcroft Correspondence.Google Scholar
Chadwick, James. 1932a. “Possible Existence of a Neutron.” Nature 129: 312.CrossRefGoogle Scholar
Chadwick, James. [1932b] 1949. “The Existence of a Neutron.” Proc. Roy. Soc. [A] 136: 692708. Reprinted in Beyer 1949, 5–21.Google Scholar
Chadwick, James. 1933a. “The Neutron and Its Properties.” Brit. J. Radiology 6: 24–32.Google Scholar
Chadwick, James. 1933b. “The Neutron.” Proc. Roy. Soc. [A] 142: 125.Google Scholar
James, Chadwick 1934. “Diffusion anomale des particules a. Transmutation des éléments par des particules a. Le neutron.” In Institut International…1934, 81–112.Google Scholar
Chadwick, James. [1964] 1984. “Some Personal Notes on the Discovery of the Neutron.” Proc. Tenth Inter. Cong. Hist. Sci. 1: 159–62. Paris: Hermann. Reprinted in Hendry 1984, 42–45.Google Scholar
Chadwick, J., and Goidhaber, M.. 1934. “A ‘Nuclear Photo-effect’: Disintegration of the Diplon by γ-Rays.” Nature 134: 237–38.CrossRefGoogle Scholar
Chadwick, J. 1935. “The Nuclear Photoelectric Effect.” Proc. Roy. Soc. [A] 151: 479–93.Google Scholar
“The Chicago Meeting.” 1933. Science Suppl. 78 (7 July):9–lO.Google Scholar
Childs, Herbert. 1968. An American Genius: The Life of Ernest Orlando Lawrence. New York: E. P. Dutton.Google Scholar
Cockcroft Correspondence, Churchill College, University of Cambridge. Abbreviated to CC.Google Scholar
Cockcroft, J. D. 1984. “Some Recollections of Low Energy Nuclear Physics.” In Hendry 1984, 74–80.Google Scholar
Cockcroft, J. D., and Walton, E. T. S.. [1932c] 1966. “Experiments with High Velocity Positive Ions. I. Further Developments in the Method of Obtaining High Velocity Positive Ions.” Proc. Roy. Soc. [A] 136: 619–30. Reprinted in Livingston 1966, 11–23.Google Scholar
Cockcroft, J. D., and Walton, E. T. S.. 1932b. “Disintegration of Lithium by Swift Protons.” Nature 129: 649.Google Scholar
Cockcroft, J. D., and Walton, E. T. S.. [1932c] 1949. “Experiments with High Velocity Positive Ions. ii. — The Disintegration of Elements by High Velocity Protons.” Proc. Roy. Soc. [A] 137: 229–42. Reprinted in Beyer 1949, 23–38.Google Scholar
Costa, J.-L. 1925. “Spectres de masse de quelques éléments légers.” Ann. de Phys. 4: 425–56.Google Scholar
Crane, [H] R., and Lauritsen, Charles C.. 1933. “A High Potential Porcelain X-Ray Tube.” Rev. Sci. Inst. 4: 118–22.CrossRefGoogle Scholar
Crane, [H] R., and Lauritsen, Charles C.. 1934. “Radioactivity from Carbon and Boron Oxide Bombarded with Deu tons and the Conversion of Positrons into Radiation.” Phys. Rev. 45: 430–32.Google Scholar
Crane, H. R., Lauritsen, C. C., and Soltan, A.. 1933.“Production of Neutrons by High Speed Deutons.” Phys. Rev. 44: 692–93.Google Scholar
Crane, H. R., Lauritsen, C. C., and Soltan, A.. 1934. “Artificial Production of Neutrons.” Phys. Rev. 45: 507–12.Google Scholar
Curie, I., and Joliot, F.. [1932] 1961. “Émission de protons de grande vitesse par les substances hydrogénées sous l'influence des rayons γ trés pénétrants.” Comptes rendus 194: 273–75. Reprinted in Joliot-Curie 1961, 359–60.Google Scholar
Curie, I., and Joliot, F.. [1933] 1961. “La complexité du proton et la masse du neutron.” Comptes rendus 197: 237–38. Reprinted in Joliot-Curie 1961, 417–18.Google Scholar
Curie, I., and Joliot, F.. 1934a. “Mass of the Neutron.” Nature 133: 721.Google Scholar
Curie, I., and Joliot, F.. [1934b] 1961. “Un nouveau type de radioactivité.” Comptes rendus 198: 254– 56. Reprinted in Joliot-Curie 1961, 5 15–16.Google Scholar
Darrow, Karl K. 1933.“ Some Contemporary Advances in Physics — XXVI. The Nucleus — I.” Bell Sys. Tech. J. 12: 288330. Reprinted as. Bell Telephone System Technical Publications Monograph B–739, 1–43.Google Scholar
Darrow, Karl K. 1934. “Some Contemporary Advances in Physics — XXVII. The Nucleus —.” Bell. Sys. Tech. J. 13: 102–58. Reprinted as Bell Telephone System Technical Publications Monograph B–769, 1–57.Google Scholar
Dee, P. I. 1935. “The Transmutation of Heavy Hydrogen Investigated by the Cloud-Track Method.” Proc. Roy. Soc. [A] 149: 200–209.Google Scholar
Einstein, Albert. [1905] 1923. “1st die Tragheit eines Körpers von seinem Energiegehalt abhängig?” Ann. der Phys. 17: 639–41. Translated by Perrett, W. and Jeffery, G. B. as “Does the Inertia of a Body Depend upon Its Energy-Content?” In The Principle of Relativity, edited by A. Sommerfeld, 69–71. New York: Dodd, Mead.Google Scholar
Albert, Einstein 1907. “Über das Relativitatsprinzip und die aus demselben gezogenen Fol gerungen.” Jahrbuch Radioaktivität u. Elekiron. 4: 411–62.Google Scholar
Energy Turned into Mass for First Time in History.” 1933. Science Suppl. 77 (7 April):9.Google Scholar
The Equivalence of Mass and Energy.” 1935. Science Suppl. 81 (7 June):8.Google Scholar
Norman, Fether 1964. “The Experimental Discovery of the Neutron.” Proc. Tenth Inter. Cong. Hist. Sci. 1: 135–44. Paris: Hermann.Google Scholar
Feather, Norman. 1974. “Chadwick's Neutron.” Contemp. Phys. 15: 565–72.CrossRefGoogle Scholar
Feenberg, E. 1934. “The Interaction between Neutrons and the Mass of the Neutron.” Phys. Rev. 45: 649.Google Scholar
Enrico, Fermi [1934] 1949, 1962. “Versuch einer Theorie der β-Strah1en. I.” Z. Phys. 88: 161–77. Reprinted in Beyer 1949, 45–61, and Fermi, Collected Papers (Note e Memorie), edited by Segrè, Emilio et al. ., 1:575–90.Google Scholar
Gapon, E. N. 1932. “Zur Theorie des Atomkerns.” Z. Phys.. 79: 676–81.Google Scholar
Giauque, W. F., and Johnston, H. L.. 1929a. “An Isotope of Oxygen, Mass 18. Interpretation of the Atmospheric Absorption Bands.” J. Amer. Chem. Soc.. 51: 1436–41.Google Scholar
Giauque, W. F., and Johnston, H. L.. 1929b. “An Isotope of Oxygen of Mass 17 in the Earth's Atmosphere.” Nature 123: 831.Google Scholar
Maurice, Goldhaber 1979. “The Nuclear Photoelectric Effect and Remarks on Higher Multipole Transitions: A Personal History.” In Stuewer 1979, 83–104.Google Scholar
Heilbron, J. L., and Seidel, Robert W.. 1989. Lawrence and His Laboratory. A History of the Lawrence Berkeley Laboratory, Vol. 1. Berkeley: University of California Press.Google Scholar
Heisenberg, Werner. 1932a. “Über den BauderAtomkerne. I.”Z. Phys. 77: 111.Google Scholar
Heisenberg, Werner 1932b. “Über den Bau der Atomkerne.II. ” Z. Phys.. 78: 156–64.CrossRefGoogle Scholar
Heisenberg, Werner 1932c. “Über den Bau der Atomkerne.III. ” Z. Phys.. 80: 587–96.Google Scholar
Henderson, Malcolm C., Livingston, M. Stanley, and Lawrence, Ernest O.. 1934. “Artificial Radioactivity Produced by Deuton Bombardment.” Phys. Rev.. 45: 428–29.Google Scholar
John, Hendry, ed. 1984. Cambridge Physics in the Thirties. Bristol: Adam Hilger.Google Scholar
Institut International de Physique Solvay. 1934. Structure et Propriétés des Noyaux Atomiques. Rapports et Discussions du septième Conseilde Physique tenu à Bruxelles du 22 au 29 Octobre 1933 sous les auspices de l'Institut International de Physique Solvay. Paris: Gauthier-Villars.Google Scholar
International Conference on Physics London 1934. 1935. Papers & Discussions. Vol. 1, Nuclear Physics. London: The Physical Society.Google Scholar
Iwanenko[Ivanenko], D. 1932a. “The Neutron Hypothesis.” Nature 129: 798.Google Scholar
Iwanenko[Ivanenko], D. 1932b. “Sur la constitution des noyaux atomiques.” Comptes rendus 195: 439–41.Google Scholar
Joliot, M., and Joliot, Mme. 1934. “Rayonnement pénétrant des atomes sous l'action des rayons a.” In Institut International … 1934, 121–56.Google Scholar
Joliot-Curie, Frédéric and Irene, . 1961. Oeuvres Scient Completes. Paris: Presses Universitaires de France.Google Scholar
Kallmann, H., and Schüler, H.. 1932. “Hyperfeinstrukturund Atomkern.” Ergeb. d. ex. Naturwiss. 11: 134–75.Google Scholar
Kovarik, A. F., and McKeehan, L. W.. 1929. “Radioactivity.” Bull. Nat. Res. Counc. Number 51 (March).Google Scholar
Kudar, Hans K. 1932. “Em wellenmechanisch-klassisches Bild des Neutrons.” Z. Phys. 78: 279–82.Google Scholar
Ladenburg, Rudolf 1934a. “The Mass of the Neutron and the Stability of Heavy Hydrogen.” Phys. Rev.. 45: 224–25.Google Scholar
Ladenburg, Rudolf. 1934b. “Errata.” Phys. Rev.. 45: 495.Google Scholar
Landé, A. 1934. “Is the Neutron an Elementary Particle? [Abstract].” Phys. Rev.. 46: 334.Google Scholar
Langer, R. M. 1934. “The Mass of the Neutron [Abstract].” Phys. Rev. 45: 137.Google Scholar
Lauritsen, C. C., and Crane, H. R.. 1934a. “Gamma-Rays from Carbon Bombarded with Deutons.” Phys. Rev. 45: 345–46.Google Scholar
Lauritsen, C. C., and Crane, H. R.. 1934b. “Transmutation of Lithium by Deutons and Its Bearing on the Mass of the Neutron.” Phys. Rev. 45: 550–52.Google Scholar
LawC: See Lawrence Correspondence.Google Scholar
Lawrence Correspondence, The Bancroft Library, University of California, Berkeley. Abbreviated to LawC.Google Scholar
Lawrence, Ernest O., and Livingston, M. Stanley. [1932] 1966. “The Production of High Speed Light Ions without the Use of High Voltages.” Phys. Rev. 40: 19–35. Reprinted in Livingston 1966, 118–34.Google Scholar
Lawrence, Ernest O., and Livingston, M. Stanley 1934. “The Emission of Protons and Neutrons from Various Targets Bombar ded by Three Million Volt Deutons.” Phys. Rev. 45: 220.Google Scholar
Lawrence, Ernest O., Livingston, M. Stanley, and Lewis, Gilbert N.. 1933. “The Emission of Protons from Various Targets Bombarded by Deutons of High Speed.” Phys. Rev. 44: 56.Google Scholar
LewC: See Lewis Correspondence.Google Scholar
Lewis Correspondence, The Bancroft Library, University of California, Berkeley. Abbreviated to LewC.Google Scholar
Lewis, Gilbert N., Livingston, M. Stanley, Henderson, Malcolm C., and Lawrence, Ernest O.. 1934a. “The Disintegration of Deutons by High Speed Protons and the Instability of the Deuton.” Phys. Rev. 45: 242–44.Google Scholar
Lewis, Gilbert N., Livingston, M. Stanley, Henderson, Malcolm C., and Lawrence, Ernest O.. 1934b. “On the Hypothesis of the Instability of the Deuton.” Phys. Rev. 45: 497.CrossRefGoogle Scholar
Lewis, Gilbert N., Livingston, M. Stanley, and Lawrence, Ernest O.. 1933. “The Emission of Alpha-Particles from Various Targets Bombarded by Deutons of High Speed.” Phys. Rev. 44: 55–56.Google Scholar
Livingston, M. Stanley, ed. 1966. The Development of High-Energy Accelerators. New York: Dover.Google Scholar
Livingston, M. Stanley, and Bethe, H. A.. [1937] 1986. “Nuclear Physics. C. Nuclear Dynamics, Experimental.” Rev. Mod. Phys. 9: 245390. Reprinted in Basic Bethe: Seminal Articles on Nuclear Physics, 1936–1937. New York: Tomash and American Institute of Physics, 331–476.Google Scholar
Livingston, M. Stanley, Henderson, Malcolm C., and Lawrence, Ernest O.. 1933a. “Neutrons from Deutons and the Mass of the Neutron.” Phys. Rev. 44: 781–82.Google Scholar
Livingston, M. Stanley, Henderson, Malcolm C., and Lawrence, Ernest O.. 1933b. “Neutrons from Beryllium Bombarded by Deutons.” Phys. Rev. 44: 782–83.Google Scholar
Loeb, L. B., and Reed, Thomas R.. 1934. “Section on Physics (B) and Associated Societies.” Science 80: 48–50.Google Scholar
Massey, H. S. W. 1932. “Passage of Neutrons through Matter.” Nature 129: 469–70.Google Scholar
Meitner, Lise. 1934. “Atomkern und periodisches System der Elemente.” Naturwiss. 22: 733–39.Google Scholar
Meitner, L., and Philipp, K.. 1934. “Weitere Versuche mit Neutronen.” Z. Phys. 87: 484–97.Google Scholar
Millikan, Robert Andrews. 1935. Electrons (+ and −), Protons, Photons, Neutrons, and Cosmic Rays. Chicago: University of Chicago Press.Google Scholar
The Neutron.” 1933. Science Suppl. 77 (3 March);89.Google Scholar
The Neutron.” 1934. Science Suppl. 80 (6 July):9.Google Scholar
New Measurements for the Atomic Weight of Hydrogen.” 1935. Science Suppl. 81(12 April):8.Google Scholar
Oliphant, Mark [L. E.] 1972. Rutherford: Recollections of the Cambridge Days. Amsterdam: Elsevier.Google Scholar
Oliphant, M. L. E., Kempton, A. [E], and Rutherford, E.. 1935a. “The Accurate Determination of the Energy Released in Certain Nuclear Transformations.” Proc. Roy. Soc. [A] 149: 406–16.Google Scholar
Oliphant, M. L. E., Kempton, A. [E], and Rutherford, E.. 1935b. “Some Nuclear Transformations of Beryllium and Boron, and the Masses of the Light Elements.” Proc. Roy. Soc. [A] 150: 241–58.Google Scholar
Oliphant, M. L. E., Kinsey, B. B., and Rutherford, E. 1933. “The Transmutation of Lithium by Protons and by Ions of the Heavy Isotope of Hydrogen.” Proc. Roy. Soc. [A] 141: 722–33.Google Scholar
Richtmyer, F. K. 1932. “The Romance of the Next Decimal Place.” Science 75: 1–5.Google Scholar
Robson, J. M. 1950. “Radioactive Decay of the Neutron.” Phys. Rev. 78: 311–12.CrossRefGoogle Scholar
Robson, J. M. 1983. “Experimental Studies of the Beta Decay of the Neutron: A Historical Review.” Contemp. Phys. 24: 129–41.Google Scholar
Ernest, Rutherford [1920] 1965. “Nuclear Constitution of Atoms.” Proc. Roy. Soc. [A] 97: 374400. Reprinted in The Collected Papers of Lord Rutherford of Nelson O.M., F.R.S., edited by Chadwick, James, 3:1438. London: George Allen and Unwin.Google Scholar
Ernest, Rutherford. 1932. “Origin of the Gamma Rays.” Nature 129: 457–58.Google Scholar
Ernest, Rutherford et al. , 1932. “Discussion on the Structure of Atomic Nuclei.” Proc. Roy. Soc. [A] 136:735–62.Google Scholar
Ernest, Rutherford et al. , 1934. “Discussion on Heavy Hydrogen.” Proc. Roy. Soc. [A] 144:128.Google Scholar
Segré, Emilio G. 1979. “Nuclear Physics in Rome.” In Stuewer 1979, 35–57.Google Scholar
Severinghaus, W. I. 1933. “Minutes of the Chicago Meeting, June 19–24, 1933.” Phys. Rev. 44:313–15.Google Scholar
Siegel, Daniel M. 1978. “Classical-Electromagnetic and Relativistic Approaches to the Problem of Nonintegral Atomic Masses.” Hist. Stud. Phys. Sci. 9:323–60.Google Scholar
Snell, Arthur H., Frances, Pleasonton, and McCord, R. V.. 1950. “Radioactive Decay of the Neutron.” Phys. Rev. 78:310–11.Google Scholar
Stuewer, Roger H., ed. 1979. Nuclear Physics in Retrospect: Proceedings of a Symposium on the 1930s. Minneapolis: University of Minnesota Press.Google Scholar
Stuewer, Roger H., ed. 1983. “The Nuclear Electron Hypothesis.” In Otto Hahn and the Rise of Nuclear Physics, edited by Shea, William R., 1967. Dordrecht: D. Reidel.Google Scholar
Stuewer, Roger H., ed. 1985. “Artificial Disintegration and the Cambridge-Vienna Controversy.” In Observation, Experiment, and Hypothesis in Modern Physical Science, edited by Achinstein, Peter and Hannaway, Owen, 239307. Cambridge, Mass. and London: MIT Press.Google Scholar
Stuewer, Roger H., ed. 1986a. “Gamow's Theory of Alpha-Decay.” In The Kaleidoscope of Science, edited by Ullmann-Margalit, E., 147–86. Dordrecht: D. Reidel.Google Scholar
Stuewer, Roger H., ed. 1986b. “The Naming of the Deuteron.” Amer. J. Phys. 54:206–18.Google Scholar
Stuewer, Roger H., ed. 1986c. “Rutherford's Satellite Model of the Nucleus.” Hist. Stud. Phys. Sci. 16:321–52.Google Scholar
Swann, W. F. G. 1930. “Report on the Work of the Bartol Research Foundation, 1929–1930.”J. Franklin Inst. 210:689792.Google Scholar
Hans, Thirring. 1935. “Die physikalischen Entdeckungen der letzten drei Jahre.” Elekirotechnik und Maschinenbau 53:6171.Google Scholar
TuveC: See Tuve Correspondence.Google Scholar
Tuve Correspondence, Library of Congress Manuscript Division, Washington, D.C. Abbreviated to TuveC.Google Scholar
Tuve, M. A. 1933. “The Atomic Nucleus and High Voltages.” J. Franklin Inst. 216: 138.Google Scholar
Tuve, M. A. 1934. “Nuclear-Physics Symposium: A Correction.” Science 80:161–62.Google Scholar
Tuve, M. A., and Hafstad, L. R.. 1934. “The Emission of Disintegration-Particles from Targets Bombarded by Protons and by Deuterium Ions at 1200 Kilovolts.” Phys. Rev. 45:651–53.Google Scholar
Urey, Harold C., Brickwedde, F. G., and Murphy, G. M.. 1932. “A Hydrogen Isotope of Mass 2.” Phys. Rev. 39:164–65.CrossRefGoogle Scholar
Walton, E. T. S. 1984. “Personal Recollections of the Discovery of Fast Particles.” In Hendry 1984, 49–55.Google Scholar
“The Weight of a Neutron.” 1933. Science Suppl. 78 (10 November): 8–10.Google Scholar
“The Weight of the Neutron.” 1934. Science Suppl. 79 (26 January):6.Google Scholar
Wentzel, G. 1935. “Zur Frage der Stabilität des Protons und des Neutrons.” Naturwiss. 23:3536.Google Scholar
David, Wilson. 1983. Rutherford Simple Genius. London: Hodder and Stoughton.Google Scholar
Wolfe, Hugh C., and Uhienbeck, G. E.. 1934. “Spontaneous Disintegration of Proton or Neutron According to the Fermi Theory.” Phys. Rev. 46:237.Google Scholar