Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-23T06:32:55.518Z Has data issue: false hasContentIssue false

Slope aspect affects the seed mass spectrum of grassland vegetation

Published online by Cambridge University Press:  22 February 2007

Péter Csontos*
Affiliation:
MTA-ELTE Research Group in Theoretical Biology and Ecology, Pázmány P. stny. 1/c., Budapest, H-1117, Hungary Department of Plant Taxonomy and Ecology of the L. Eötvös University, Pázmány P. stny. 1/c., Budapest, H-1117, Hungary
Júlia Tamás
Affiliation:
Botanical Department of the Hungarian Natural History Museum, P.O. Box 222, Budapest, H-1476, Hungary
János Podani
Affiliation:
Department of Plant Taxonomy and Ecology of the L. Eötvös University, Pázmány P. stny. 1/c., Budapest, H-1117, Hungary
*
*Corresponding author: Email:, cspeter@ludens.elte.hu

Abstract

Seed mass distribution in grassland communities of slopes of contrasting aspect was analysed in dolomite regions of the Pannonian Basin. Species frequencies were obtained for four pairs of data sets, which originated from corresponding south- and north-facing dolomite grasslands, thus forming four independent case studies. The data sets comprised 5–15 sample plots and 51–114 (average 85) species. The species were classified using an eight-class system reflecting their mean seed mass (MSM) records (class 1 being the lowest, MSM ≤ 0.2 mg; class 8 being the highest, MSM > 50 mg). Seed mass class distributions derived from slopes of contrasting aspect showed strong significant differences in chi-square tests for trend for all the four case studies. Small-seeded species (classes 1 and 2) showed a positive balance for the south-facing slopes, whereas large-seeded species (classes 5, 6, 7 and 8) were more frequent on north-facing slopes. Species with intermediate seed mass (classes 3 and 4) were not distinctive between the slopes. These results represent strong evidence of increased seed mass in the vegetation of north-facing grasslands, when compared to their south-facing counterparts. Among the phenomena potentially responsible for the new findings, we discuss the roles of microclimatic effects (especially drought stress and light regime), grass litter, interspecific competition and seed predation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Attorre, F., Alfo, M., Bottini, D. and Bruno, F. (2003) The relationship between woody vegetation and environmental factors: a spatial discriminant analysis. Community Ecology 4, 4349.Google Scholar
Azcarate, F.M., Sanchez, A.M., Arqueros, L. and Peco, B. (2002) Abundance and habitat segregation in Mediterranean grassland species: the importance of seed weight. Journal of Vegetation Science 13, 159166.CrossRefGoogle Scholar
Baker, H.G. (1972) Seed weight in relation to environmental conditions in California. Ecology 53, 9971010.CrossRefGoogle Scholar
Bartha, S., Collins, S.L., Glenn, S.M. and Kertész, M. (1995) Fine-scale spatial-organization of tallgrass prairie vegetation along a topographic gradient. Folia Geobotanica and Phytotaxonomica 30, 169184.CrossRefGoogle Scholar
Bartha, S., Rédei, T., Szollát, Gy., Bódis, J. and Mucina, L. (1998) Északi és déli kitettségű dolomitsziklagyepek térbeli mintázatának összehasonlítása. [Compositional diversity and fine-scale spatial patterns of dolomite grasslands on contrasting slopes.]. pp. 159182. in Csontos, P. (Ed.) Sziklagyepek szünbotanikai kutatása [Synbotanical studies of rock grasslands] (in Hungarian, with English summary). Budapest, Scientia.Google Scholar
Cerabolini, B., Ceriani, R.M., Caccianiga, M., De Andreis, R. and Raimondi, B. (2003) Seed size, shape and persistence in soil: a test on Italian flora from Alps to Mediterranean coasts. Seed Science Research 13, 7585.CrossRefGoogle Scholar
Critchfield, W.B. (1971) Profiles of California vegetation. Research Paper PSW-76. Berkeley, California, USDA Forest Service.Google Scholar
Csontos, P. (1998) The applicability of a seed ecological database (SEED) in botanical research. Seed Science Research 8, 4751.CrossRefGoogle Scholar
Csontos, P. and Lőkös, L. (1992) Védett edényes fajok térbeli eloszlás-vizsgálata a Budai-hg. dolomitvidékén. – Szünbotanikai alapozás, természetvédelmi területek felméréséhez [The analysis of the spatial distribution of protected vascular plant species on a dolomite region of the Budai-Mts., Hungary. – Synbotanical approach to evaluation of nature reserves] (in Hungarian, with English summary). Botanikai Közlemények 79, 121143.Google Scholar
Csontos, P. and Tamás, J. (2003) Comparisons of soil seed bank classification systems. Seed Science Research 13, 101111.CrossRefGoogle Scholar
Debreczy, Zs. (1987) Fluctuating-dynamic equilibrium of photophil, xerophil rupicolous plant communities and scrub woods at the lower arid woodland limit. Annales historico-naturales Musei nationalis hungarici 79, 89112.Google Scholar
Draskovits, R. Kovács-Láand, ng, E. (1968) Mikroklimamessungen in Kalkstein- und Dolomitfelsenrasen. Annales Universitatis Scientiarum Budapestinensis, Sectio Biologica 9–10115129.Google Scholar
Funes, G., Basconcelo, S., Díaz, S. and Cabido, M. (1999) Seed size and shape are good predictors of seed persistence in soil in temperate mountain grasslands of Argentina. Seed Science Research 9, 341345.CrossRefGoogle Scholar
Grime, J.P. and Hillier, S.H. (2000) The contribution of seedling regeneration to the structure and dynamics of plant communities, ecosystems and larger units of the landscape. pp. 361374. in Fenner, M. (Ed.) Seeds: The ecology of regeneration in plant communities. Wallingford, CABI Publishing.CrossRefGoogle Scholar
Grime, J.P. and Jeffrey, D.W. (1965) Seedling establishment in vertical gradients of sunlight. Journal of Ecology 53, 621642.CrossRefGoogle Scholar
Hodgson, J.G. and Mackey, J.M.L. (1986) The ecological specialization of dicotyledonous families within a local flora: some factors constraining optimization of seed size and their possible evolutionary significance. New Phytologist 104, 497515.CrossRefGoogle Scholar
Hodgson, J.G., Grime, J.P., Hunt, R. and Thompson, K. (1995) Electronic comparative plant ecology. London, Chapman & Hall.CrossRefGoogle Scholar
Hodkinson, D.J. and Thompson, K. (1997) Plant dispersal: the role of man. Journal of Applied Ecology 34, 14841496.CrossRefGoogle Scholar
Hodkinson, D.J., Askew, A.P., Thompson, K., Hodgson, J.G., Bakker, J.P. and Bekker, R.M. (1998) Ecological correlates of seed size in the British flora. Functional Ecology 12, 762766.CrossRefGoogle Scholar
InStat (1997) GraphPad InStat Demo, Version 3.00 for Win 95/NT. San Diego, GraphPad Software Incl.Google Scholar
Jurado, E. and Westoby, M. (1992) Seedling growth in relation to seed size among species of arid Australia. Journal of Ecology 80, 407416.CrossRefGoogle Scholar
Kenderes, K. and Standovár, T. (2003) The impact of forest management on forest floor vegetation evaluated by species traits. Community Ecology 4, 5162.CrossRefGoogle Scholar
Leishman, M.R. and Westoby, M. (1994) Hypotheses on seed size – tests using the semiarid flora of western New-South-Wales, Australia. American Naturalist 143, 890906.CrossRefGoogle Scholar
Leishman, M.R. and Westoby, M. (1998) Seed size and shape are not related to persistence in soil in Australia in the same way as in Britain. Functional Ecology 12, 480485.CrossRefGoogle Scholar
Leishman, M.R., Wright, I.J., Moles, A.T. and Westoby, M. (2000) The evolutionary ecology of seed size. 3157. in Fenner, M.Seeds: The ecology of regeneration in plant communities. Wallingford, CABI Publishing.CrossRefGoogle Scholar
Maglocky, S. (1979) Xerotermá vegetácia v Povazskom Inovci. Bratislava, Veda.Google Scholar
Mazer, S.J. (1989) Ecological, taxonomic and life history correlates of seed mass among Indiana dune angiosperms. Ecological Monographs 59, 153175.CrossRefGoogle Scholar
Mazer, S.J. and Lowry, D.E. (2003) Environmental, genetic, and seed mass effects on winged seed production in the heteromorphic Spergularia marina ( Caryophyllaceae ). Functional Ecology 17, 637650.CrossRefGoogle Scholar
Metcalfe, D.J. and Grubb, P.J. (1995) Seed mass and light requirements for regeneration in Southeast Asian rain forest. Canadian Journal of Botany 73, 817826.CrossRefGoogle Scholar
Milberg, P., Andersson, L. and Thompson, K. (2000) Large-seeded species are less dependent on light for germination than small-seeded ones. Seed Science Research 10, 99104.CrossRefGoogle Scholar
Parker, V.T. and Kelly, V.R. (1989) Seed banks in California chaparral and other Mediterranean climate shrublands. pp. 231255. in Leck, M.A.;, Parker, V.T.;, Simpson, R.L.; (Eds) Ecology of soil seed banks. San Diego, Academic Press.CrossRefGoogle Scholar
Peco, B., Traba, J., Levassor, C., Sánchez, A.M. Azcáand, rate, F.M. (2003) Seed size, shape and persistence in dry Mediterranean grass and scrublands. Seed Science Research 13, 8795.CrossRefGoogle Scholar
Reader, R.J. (1993) Control of seedling emergence by ground cover and seed predation in relation to seed size for some old-field species. Journal of Ecology 81, 169175.CrossRefGoogle Scholar
Rees, M. (1995) Community structure in sand dune annuals – is seed weight a key quantity?. Journal of Ecology 83, 857863.CrossRefGoogle Scholar
Salisbury, E.J. (1942) The reproductive capacity of plants. London, G. Bell and Sons.Google Scholar
Salisbury, E.J. (1974) Seed size and mass in relation to environment. Proceedings of the Royal Society of London B 186, 8388.Google Scholar
Tamás, J. (1997) A növényzet regenerálódása leégett feketefenyvesek helyén, dolomiton [Regeneration of dolomite grasslands after burning of Austrian pine plantations] (in Hungarian). MSc thesis, ELTE, Budapest.Google Scholar
Tamás, J. (2001) Tűz utáni szukcesszió vizsgálata feketefenyvesekben [Post-fire succession studies in Austrian pine plantations] (in Hungarian, with English summary). PhD thesis, ELTE, Budapest.Google Scholar
Thompson, K. (2000) The functional ecology of soil seed banks. pp. 215235. in Fenner, M.Seeds: The ecology of regeneration in plant communities Wallingford, CABI Publishing.CrossRefGoogle Scholar
Thompson, K. and Rabinowitz, D. (1989) Do big plants have big seeds?. American Naturalist 133, 722728.CrossRefGoogle Scholar
Thompson, K., Band, S.R. and Hodgson, J.G. (1993) Seed size and shape predict persistence in soil. Functional Ecology 7, 236241.CrossRefGoogle Scholar
Török, K. Zóand, lyomi, B. (1998) A Kárpát-medence öt sziklagyeptársulásának szünbotanikai revíziója [Syntaxonomic revision on five rocky grassland communities of the Carpathian Basin]. Sziklagyepek szünbotanikai kutatása [Synbotanical studies of rock grasslands] 109132. Csontos P. (in Hungarian, with English summary). Budapest ScientiaGoogle Scholar
Westoby, M., Jurado, E. and Leishman, M. (1992) Comparative evolutionary ecology of seed size. Trends in Ecology and Evolution 7, 368372.CrossRefGoogle ScholarPubMed
Xiong, S. and Nilsson, C. (1999) The effects of plant litter on vegetation: a meta-analysis. Journal of Ecology 87, 984994.CrossRefGoogle Scholar
Zólyomi, B. (1936) Übersicht der Felsenvegetation in der Pannonischen Florenprovinz und dem nordwestlich angrenzenden Gebiete. Annales historico-naturales Musei nationalis hungarici 30, 136174.Google Scholar
Zólyomi, B. (1942) Die Mitteldonau-Florenscheide und das Dolomitphänomen. Botanikai Közlemények 39, 209231.Google Scholar
Zólyomi, B. (1958) Budapest és környékének természetes növénytakarója [Natural vegetation of Budapest and its surroundings] (in Hungarian). pp. 508642. in Pécsi, M. (Ed.) Budapest természeti képe. Budapest, Akadémiai KiadóGoogle Scholar
Zólyomi, B. (1987) Coenotone, ecotone and their role in preserving relic species. Acta Botanica Hungarica 33, 318.Google Scholar