Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-28T22:25:59.221Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  19 July 2017

Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Other
Copyright
Copyright © 1980 University of Tennessee, Knoxville 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberch, P., Gould, S. J., Oster, G. F. and Wake, D. B. 1979. Size and shape in ontogeny and phylogeny. Paleobiology 5: 296317.CrossRefGoogle Scholar
Algor, J. R. 1971. Structure of the ambulacral system in some modern and early Paleozoic starfish. Geol. Soc. Amer. Abstr. Prog. 3(7):489490.Google Scholar
Anderson, J. M. 1978. Studies on functional morphology in the digestive system of Oreaster reticulatus (L. Asteroidea). Biol. Bull. Mar. Biol. Lab. 154: 114.Google Scholar
Anonymous. 1971. Australian Joint Government Report on A. planci. Report of the Committee on the Problems of the Crown of Thorns starfish (Acanthaster planci). Chairman: R. J. Walsh.Google Scholar
Ausich, W. I. 1980a. A model for niche differentiation in Lower Mississippian crinoid communities. J. Paleontol. 54: 273288.Google Scholar
Ausich, W. I. 1980b. Functional morphology and feeding strategies of Barycrinus asteriscus Van Sant (Crinoidea: Mississippian). Geol. Soc. Amer. Abstr. Prog. 12(5): 218.Google Scholar
Ausich, W. I., Kammer, T. W. and Lane, N. G. 1979. Fossil communities of the Borden (Mississippian) Delta in Indiana and northern Kentucky. J. Paleontol. 53: 11821196.Google Scholar
Ausich, W. I. and Lane, N. G. 1980. Platform communities and rocks of the Borden Siltstone Delta (Mississippian) along the south shore of the Monroe Reservior, Monroe County, Indiana, p. 3667 In Shaver, R. H. (ed.), Field Trips 1980 from the Indiana University Campus, Bloomington. Field trip for North-Central Sect. Geol. Soc. Amer. Google Scholar
Bak, R. P. M. and van Eys, G. 1975. Predation of the sea urchin Diadema antillarum Philippi on living coral. Oecologia 20:111115.Google Scholar
Barnes, A. T., Quetin, L. B., Childress, J. J. and Pawson, D. L. 1976. Deepsea macroplanktonic sea cucumbers: suspended sediment feeders captured from deep submergence vehicle. Science 194: 10831085.CrossRefGoogle ScholarPubMed
Bassler, R. S. 1935. The classification of the Edrioasteroidea. Smithsonian Misc. Coll. 93(8): 111.Google Scholar
Bassler, R. S. 1936. New Species of American Edioasteroidea. Smithsonian Misc. Coll. 95(6): 133.Google Scholar
Bassler, R. S. 1950. New genera of American Middle Ordovician “Cystoidea”. J. Wash. Acad. Sci. 10: 273277.Google Scholar
Bassler, R. S. and Moodey, M. W. 1943. Bibliographic and faunal index of Paleozoic pelmatozoan echinoderms. Geol. Soc. Amer. Spec. Paper 45: 1734.Google Scholar
Bather, F. A. 1898. Dinocystis barroisi, n.g. et sp., Psammites du Condroz. Geol. Mag. (n.s.), dec. 4, 5: 543548.Google Scholar
Bather, F. A. 1899a. A phylogenetic classification of the Pelmatozoa. British Assoc. Advancement Sci., Rept. 68th Meeting sec. D (Bristol, 1898) London: 916923.Google Scholar
Bather, F. A. 1899b. The horizon of Dinocystis barroisi, a letter in reply. Geol. Mag. (n.s.) dec. 4, 6: 134136.Google Scholar
Bather, F. A. 1900. The Echinoderma. In: Lankester, E. R. (ed.), A Treatise on Zoology. 3: 1344. Adam and Charles Black, London.Google Scholar
Bather, F. A. 1908. Lebetodiscus, n.g. for Agelacrinites dicksoni Billings. Geol. Mag. (n.s.) dec. 5, 5: 543550.Google Scholar
Bather, F. A. 1913. Caradocian Cystidea from Girvan. Roy. Soc. Edinburgh, Trans., 49: 2 (No. 6): 359529.Google Scholar
Bather, F. A. 1914. The Edrioasters of the Trenton Limestone (Parts 1 and 2). Geol. Mag. (n.s.) dec. 6, 1: 115125, 162–171.Google Scholar
Bather, F. A. 1915a. Morphology and Bionomics of the Edrioasteroidea (Parts 1 and 2). Geol. Mag. (n.s.) dec. 6, 2: 211215, 259–266.Google Scholar
Bather, F. A. 1915b. A Comparison with the Structure of Asterozoa. Geol. Mag. (n.s.) dec. 6, 2: 316322.Google Scholar
Bather, F. A. 1915c. The Genetic Relations to other Echinoderms. Geol. Mag. (n.s.) dec. 6, 2: 393403.CrossRefGoogle Scholar
Bather, F. A. 1915d. Studies in Edrioasteroidea I-IX. Articles on Edrioasteroidea published in the Geological Magazine between 1898 and 1915 were reissued, including plates and retaining original pagination, with an added preface and index, as a book published by the author at “Fabo”, Marrat Road, Wimbledon, England.Google Scholar
Bather, F. A. 1929. Une classe d'échinodermes sans trace de symétrie rayonnee. Ass. Franc. Avanc., Sci. C. R. 53e Sess. Le Havre: 435438.Google Scholar
Bather, F. A. 1930. A class of Echinodermata without a trace of radiate symmetry. Arch. Zool. Ital., 14: 431439.Google Scholar
Beaver, H. H. 1968. [Blastoid] Morphology. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, pt. S 2: S300-S350, Geol. Soc. Amer. and Univ. Kans., Lawrence.Google Scholar
Beaver, H. H., Fay, R. O., Macurda, D. B. Jr., Moore, R. C. and Wanner, J. 1968. Blastoids. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, pt. S 2: S298-S455. Geol. Soc. Amer. and Univ. Kans., Lawrence.Google Scholar
Beerbower, J. R. 1968. Search for the Past. Prentice-Hall, Inc., Englewood Cliffs, N. J., 512 p.Google Scholar
Bell, B. M. 1975. Ontogeny and systematics of Timeischytes casteri sp. nov.: an enigmatic Devonian edrioasteroid. Bull. Amer. Paleontol. 67(287): 3356.Google Scholar
Bell, B. M. 1976a. A study of North American Edrioasteroidea. New York St. Mus. Mem. 21: 1447.Google Scholar
Bell, B. M. 1976b. Phylogenetic implications of ontogenetic development in the Class Edrioasteroidea. J. Paleontol. 50: 10011019.Google Scholar
Bell, B. M. 1977. Respiratory schemes in the Class Edrioasteroidea. J. Paleontol. 51: 619632.Google Scholar
Bell, B. M. and Haugh, B. N. 1979. Echinoderm symmetry, classification, and phylogeny. Geol. Soc. Am. Abstr. Prog. 11(7): 386.Google Scholar
Bell, B. M. and Sprinkle, J. 1978. Totiglobus, an unusual new edrioasteroid from the Middle Cambrian of Nevada. J. Paleontol., 52:243266.Google Scholar
Bell, F. J. 1891. On the arrangement and inter-relations of the classes of Echinodermata. Ann. Mag. Nat. Hist. 8: 206215.Google Scholar
Benedict, G. L. and Walker, K. R. 1978. Paleobathymetric analysis in Paleozoic sequences and its geodynamic significance. Amer. J. Sci. 278: 579607.Google Scholar
Bergström, S. M. 1973. Biostratigraphy and facies relations in the lower Middle Ordovician of easternmost Tennessee. Amer. J. Sci. 273A:261293.Google Scholar
Billings, E. 1858. On thr Cystidea of the Lower Silurian Rocks of Canada. Geol. Surv. Canada, Fig. and Descriptions of Canadian Organic Remains, dec. 3: 974.Google Scholar
Birkeland, C., Chia, F.-S., and Strathmann, R. R. 1971. Development, substratum selection, delay of metamorphosis and growth in the seastar, Mediaster aequalis Stimpson. Biol. Bull. 141: 99108.Google Scholar
Blake, D. B. 1967. Skeletal elements in asteroids. Abstr. for 1967, Geol. Soc. Amer. Spec. Paper. 115: 1516.Google Scholar
Blake, D. B. 1972. Sea star Platasterias: ossicle morphology and taxonomic position. Science 176(4032): 306307.Google Scholar
Blake, D. B. 1973. Ossicle morphology of some Recent asteroids and description of some west American fossil asteroids. Univ. Calif. Pub. Geol. Sci. 104: 160.Google Scholar
Blake, D. B. 1979. The affinities and origins of the crown-of-thorns sea star Acanthaster Gervais. J. Nat. Hist. 13: 303314.Google Scholar
Blake, D. B. in press. A reassessment of the sea star orders Valvatida and Spinulosida. J. Nat. Hist. Google Scholar
Blake, D. B. and Allison, R. C. 1970. A new west American Eocene species of the Recent Australian ophiuroid Ophiocrossota. J. Paleontol. 44:925927.Google Scholar
Bockelie, J. F. 1979. Taxonomy, functional morphology and palaeoecology of the Ordovician cystoid family Hemicosmitidae. Palaeontol. 22: 363406.Google Scholar
Branham, J. M., Reed, S. A., Bailey, J. H. and Caperon, J. 1971. Coraleating sea stars Acanthaster planci in Hawaii. Science 172: 11551157.Google Scholar
Branstrator, J. W. 1972. Lanthanaster cruciformis, a new upper Ordovician sea-star from Cincinnati, Ohio. J. Paleontol. 46: 6973.Google Scholar
Branstrator, J. W. 1973. Podial pore evolution: controlling factor in development of asteroid opportunism. Geol. Soc. Am. Abstr. Prog. 5(1):1516.Google Scholar
Branstrator, J. W. 1975. Podial efficacy of some Ordovician asteroids (Echinodermata) from North America. Bull. Amer. Paleontol. 67(287):5769.Google Scholar
Branstrator, J. W. 1979. Asteroidea. In Pojeta, J. Jr. (ed.), Contributions to the paleontology of Kentucky and nearby states. U.S. Geol. Surv. Prof. Paper.1066-F, 7 p.Google Scholar
Breimer, A. 1969. A contribution to the paleoecology of Paleozoic stalked crinoids. Koninkl. Ned. Akad. Wetensch. Proc. Ser. B, 72:139150.Google Scholar
Breimer, A. and Macurda, D. B. Jr. 1972. The phylogeny of fissiculate blastoids. K. Ned. Akad. Van Wet. Verh., Afd. Nat., Eerste Reeks, 26(3):1390.Google Scholar
Breimer, A. and Macurda, D. B. Jr. 1973. Paleozoic blastoids. In Hallam, A. (ed.), Atlas of Palaeobiogeography, p. 207212. Elsevier, Amsterdam.Google Scholar
Breimer, A. and Ubaghs, G. 1974. A critical comment on the classification of the pelmatozoan echinoderms. I and II. Koninkl. Ned. Akad. Wetensch., Proc. Ser. B, 77: 398417.Google Scholar
Brett, C. E. 1978. Attachment structures in the rhombiferan cystoid Caryocrinites and their paleobiological implications. J. Paleontol. 52: 717726.Google Scholar
Broadhead, T. W. 1978. Carboniferous camerate crinoid subfamily Dichocrininae. unpubl. Ph.D. dissertation, Univ. of Iowa, 246 p.Google Scholar
Broadhead, T. W. 1980. Range Extension - Middle Ordovician blastoids (Echinodermata) from the southern Appalachians. Geol. Soc. Amer. Abstr. Prog. 12(4): 172.Google Scholar
Broadhead, T. W. and Breland, F. C. 1980. Palaeocystitidae - Middle Ordovician echinoderms with eocrinoid and paracrinoid affinities. Geol. Soc. Amer. Abstr. Prog. 12(4): 172.Google Scholar
Broadhead, T. W. and Strimple, H. L. 1975. Respiration in a vagrant Ordovician cystoid, Amecystis. Paleobiology 1: 312319.Google Scholar
Broadhead, T. W. and Strimple, H. L., 1977. Permian platycrinitid crinoids from Arctic North America. Can. J. Earth Sci. 14:11161175.Google Scholar
Broili, F. 1926. Eine Holothurien aus dem oberen Jura von Franken. Bayerischen Akad. Wiss. München 1926: 341351.Google Scholar
Brower, J. C. 1967. The actinocrinitid genera, Abactinocrinus, Aacocrinus and Blairocrinus. J. Paleontol. 41: 675705.Google Scholar
Brower, J. C. 1969. Crinoids. In McKee, E. D. and Gutschick, R. C. (eds.), History of the Redwall Limestone of northern Arizona. Geol. Soc. Amer. Mem. 114: 475543.Google Scholar
Brower, J. C. 1974. Ontogeny of camerate crinoids. Univ. Kans. Paleontol. Contrib. Paper 72, 53 p.Google Scholar
Brower, J. C. and Veinus, J. 1974. Middle Ordovician crinoids from southwestern Virginia and eastern Tennessee. Bull. Amer. Paleontol. 66(283): 1125.Google Scholar
Brower, J. C. and Veinus, J. 1978. Middle Ordovician crinoids from the Twin Cities area of Minnesota. Bull. Amer. Palontol. 74(304): 369506.Google Scholar
Cameron, A. M. 1977. Acanthaster and coral reefs: population outbreaks of a rare and specialized carnivore in a complex high diversity system. Proc. 3rd Int. Coral Reef Symp., Miami 1: 193200.Google Scholar
Campbell, A. C., Dart, J. K. G., Head, S. M. and Ormond, R. F. G. 1973. The feeding activity of Echinostrephus molaris (de Blainville) in the central Red Sea. Mar. Behav. Physiol. 2: 155169.Google Scholar
Carey, A. G. Jr. 1972. Food sources of sublittoral, bathyal and abyssal asteroids in the northeast Pacific Ocean. Ophelia 10: 3547.Google Scholar
Caster, K. E. 1952. Concerning Enoploura of the Upper Ordovician and its relation to other carpoid Echinodermata. Bull. Amer. Paleontol. 34(141): 147.Google Scholar
Caster, K. E. 1954. A new carpoid echinoderm from the Parana Devonian. Acad. Brazil. Ciencias, An. 26: 123147.Google Scholar
Caster, K. E. 1968. Homalozoans, Homoiostelea. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology. pt. S 2: S581-S627. Geol. Soc. America, Univ. of Kans. Lawrence.Google Scholar
Chauvel, J. 1941. Recherches sur les cystoides et les carpoides amoricains. Mem. Soc. geol. miner. Bretagne 5: 1286.Google Scholar
Chauvel, J. 1966. Echinodermes de l'Ordovicien du Maroc. Cah. Paleontol. 120 p.Google Scholar
Chauvel, J. 1971. Les Echinodermes Carpoides du Paleozoique inferieur marocain. Notes Serv. Geol. Maroc. 31: 4960.Google Scholar
Chauvel, J. and Nion, J. 1977. Echinodermes (Homalozoa: Cornuta et Mitrata) Nouveaux por l'Ordovicien du Massif Amoricain et consequences paleogeographiques. Geobios 10: 3549.Google Scholar
Chesher, R. H. 1969. Destruction of Pacific corals by the sea star Acanthaster planci. Science 165: 280283.Google Scholar
Chia, F. S. and Amerongen, H. 1975. On the prey-catching pedicellariae of a starfish, Stylasterias forreri (de Loriol). Canadian J. Zool. 53:748755.Google Scholar
Clark, A. H. 1912. Restoration of the genus Eldonia, a genus of free-swimming holothurians from the Middle Cambrian. Zool. Anz. 39: 723725.Google Scholar
Clark, A. H. 1913. Cambrian holothurians. Amer. Nat. 47: 488507.Google Scholar
Clark, A. M. 1968. Starfishes and their relations, 2nd ed. Brit. Mus. (Nat. Hist.) Pub. 377, 118 p.Google Scholar
Clark, A. M. and Courtman-Stock, J. 1976. The echinoderms of southern Africa. Brit. Mus. (Nat. Hist.) Pub. 776, 278 p.Google Scholar
Clark, A. M. and Rowe, F. W. 1971. Monograph of shallow-water Indo-West Pacific echinoderms. British Museum (Nat. Hist.) Publ. 690, 238 p.Google Scholar
Clark, H. L. 1912. Fossil holothurians. Science 35(894): 274278.Google Scholar
Clark, R. B. 1967. Dynamics in metazoan evolution. 313 pp. Oxford University Press; London.Google Scholar
Clarke, J. M. 1901. New Agelacrinites. New York State Mus. Bull. 49, Paleontol. Papers (2): 182198.Google Scholar
Cooper, G. A. 1956. Chazyan and related brachiopods. Smithsonian Misc. Coll. 127(1): 11024.Google Scholar
Croneis, C. and McCormack, J. 1932. Fossil Holothuroidea. J. Paleontol. 6:11148.Google Scholar
Davenport, D. 1966. Echinoderms and the control of behavior in associations. In Boolootian, R. A. (ed.), Physiology of Echinodermata, p. 145156, Wiley Interscience, New York.Google Scholar
Davis, W. 1966. Observations on the biology of the ophiuroid Astrophyton muricatum. Mar. Sci. Bull. 16: 435444.Google Scholar
Deflandre-Rigaud, M. 1962. Contribution a la connaissance des sclerites d'holothurides fossiles. Mem. Mus. d'Hist. nat. Paris 11: 1123.Google Scholar
Dehm, R. 1933. Cystoideen aus dem rheinischen Unterdevon. Neues Jb. Miner. 69, Abt. B: 6572.Google Scholar
Dehm, R. 1934. Untersuchungen an Cystoiden des rheinischen Unterdevons. Abt. Bayer. Adad. Wiss. mat. nat. Sber. München, H. 1: 1943.Google Scholar
Derstler, K. L. 1975. Carpoid echinoderms from Pennsylvania. Geol. Soc. Am. Abstr. Prog. 7(1): 48.Google Scholar
Diamond, J. M. 1978. Niche shifts and rediscovery of interspecific competition. Am. Sci. 66: 322331.Google Scholar
Dietl, G. and Mundlos, R. 1972. Ökologie und Biostratinomie von Ophiopinna elegans (Ophiuroidea) aus dem Untercallovium vom La Voulte (Südfrankreich). Neues Jb. Geol. Palaontol. Mh. 1972: 449464.Google Scholar
Döderlien, L. 1920. Die Asteriden der Siboga-Expedition II: Die Gattung Luidia und ihre Stammesgeschichte. Siboga-Expeditie Mono. 46b: 193–294. Downey, M. E. 1972. Midgardia xandaros new genus, new species, a large brisingid starfish from the Gulf of Mexico. Proc. Biol. Soc. Wash. 84: 421426.Google Scholar
Downey, M. E. 1973. Starfishes from the Caribbean and the Gulf of Mexico. Smithsonian Contr. Zool. 126: 1158.Google Scholar
Dubatolova, Yu. A. 1971. Crinoidea of the Early and Middle Devonian of the Altai and Kuzbas (Morskie lilii Rannego i Srednego Devona Altaya i Kuzbassa). Akad. Nauk SSSR Sibirsk. Otdeleniye Inst. Geol. i Geof. Trudy Vyp. 124: 1159.Google Scholar
Dubatolova, Yu. A. and Yeltyschewa, R. S. 1967. Stratigraphic importance of the Devonian crinoids of Siberia. In Oswald, D. H. (ed.), International symposium on the Devonian system. Alberta Soc. Petroleum Geol, p. 537542.Google Scholar
Durham, J. W. 1966. Camptostroma, an early Cambrian supposed scyphozoan referable to Echinodermata. J. Paleontol. 40: 12161220.Google Scholar
Durham, J. W. 1967. Notes on the Helicoplacoidea and early echinoderms. J. Paleontol., 41: 97102.Google Scholar
Durham, J. W. 1968. Camptostromatoids. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, pt. S 2: S627-S631, Geol. Soc. Amer. and Univ. Kans., Lawrence.Google Scholar
Durham, J. W. 1971. The fossil record and the origin of the Deuterostomia. In Yochelson, E. (ed.), Proc. N. Amer. Paleontol. Conv. pt. H: 11041132.Google Scholar
Durham, J. W. 1974. Systematic position of Eldonia ludwigi Walcott. J. Paleontol. 48: 750755.Google Scholar
Durham, J. W. 1978. A lower Cambrian eocrinoid. J. Paleontol. 52: 195199.Google Scholar
Durham, J. W. and Allison, E. C. 1960. Symposium: The biogeography of Baja California and adjacent seas. System. Zool. 9: 4791.Google Scholar
Ehlers, G. M. and Kesling, R. V. 1958a. Timeischytes, a new genus of hemicystitid edrioasteroid from the Middle Devonian Four Mile Dam Limestone of Michigan. J. Paleontol. 32: 933936.Google Scholar
Ehlers, G. M. and Kesling, R. V. 1958b. Cyclic pattern of ambulacral covering plates in Discocystis laudoni and its taxonomic implications. Univ. Michigan, Contrib. Mus. Paleontol. 14(15): 265276.Google Scholar
Eldredge, N. and Gould, S. J. 1972. Punctuated equilibra: an alternative to phyletic gradualism. In Schopf, T. J. M. (ed.), Models in Paleobiology, p. 82115, Freeman, Cooper and Company, San Francisco, Califfornia.Google Scholar
Endean, R. 1977. Acanthaster planci infestations on reefs of the Great Barrier Reef. Proc. 3rd Int. Coral Reef Symp., Miami 1: 185192.Google Scholar
Endean, R. and Stablum, W. 1973. The apparent extent of recovery of reefs of Australia's Great Barrier Reef devastated by the Crown-of-Thorns starfish. Atoll Res. Bull. 168, 38 pp.Google Scholar
Ernst, G. and Seibertz, E. 1977. Concepts and methods of echinoid biostratigraphy. In Kauffman, E. G. and Hazel, J. E. (eds.), Concepts and Methods of Biostratigraphy, p. 541563, Dowden, Hutchinson and Ross.Google Scholar
Etheridge, R. Jr. 1881. On the presence of the scattered skeletal remains of Holothuroidea in the Carboniferous Limestone Series of Scotland. Proc. Roy. Phys. Soc. Edinburgh 6: 183198.Google Scholar
Etheridge, R. Jr. and Carpenter, P. H. 1886. Catalogue of the Blastoidea. Brit. Mus. Cat. 322 p.Google Scholar
Fankboner, P. V. 1978. Suspension-feeding mechanisms of the armoured sea cucumber Psolus chitinoides Clark. J. exp. mar. Biol. Ecol. 31: 1125.Google Scholar
Fay, R. O. 1962. Edrioblastoidea, a new class of Echinodermata. J. Paleontol. 36: 201205.Google Scholar
Fay, R. O. 1978. Order Coronata Jaekel, 1918. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, pt. T 2: T574-T578, Geol. Soc. Amer. and Univ. Kans., Lawrence.Google Scholar
Feder, H. M. and Christensen, A. M. 1966. Aspects of asteroid biology. In Boolootian, R. A. (ed.), Physiology of Echinodermata, Interscience Pub., John Wiley & Sons, New York.Google Scholar
Fell, H. B. 1961. The fauna of the Ross Sea, 1: Ophiuroidea. New Zealand Ocean. Inst. Mem. 18: 180.Google Scholar
Fell, H. B. 1962a. A surviving somasteroid from the eastern Pacific Ocean. Science 136: 633636.Google Scholar
Fell, H. B. 1962b. A living somasteroid, Platasterias latiradiata Gray. Univ. Kans. Paleontol. Contrib. Art. 6: 116.Google Scholar
Fell, H. B. 1962c. Evidence for the validity of Matsumoto's classification of the Ophiuroidea. Publs. Seto. Mar. Biol. Lab 10: 145152.Google Scholar
Fell, H. B. 1962d. A classification of echinoderms. Tuatara, 10: 138140.Google Scholar
Fell, H. B. 1963a. Evolution of the echinoderms. Smithsonian Inst. Ann. Rept. 1962: 457490.Google Scholar
Fell, H. B. 1963b. The phylogeny of sea-stars. Roy Soc. Lon. Philos. Trans. Ser. B. 246(735): 381435.Google Scholar
Fell, H. B. 1965a. The early evolution of the Echinozoa. Breviora. 219: 117.Google Scholar
Fell, H. B. 1965b. Reply to ancestry of sea-stars by G. M. Philip. Nature. 208: 768769.Google Scholar
Fell, H. B. 1966a. Ecology of crinoids. In Boolootian, R. A. (ed.), Physiology of Echinodermata, p. 4962, Wiley Interscience, New York.Google Scholar
Fell, H. B. 1966b. The ecology of ophiuroids. In Boolootian, R. A. (ed.), Physiology of Echinodermata, p. 129143, Wiley Interscience, New York.Google Scholar
Fell, H. B. 1968. Echinoderm ontogeny. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, pt. S 1: S60-S85, Geol. Soc. Amer. and Univ. Kans., Lawrence.Google Scholar
Fenchel, T. 1965. Feeding biology of the sea-star Luidia sarsi Düben and Koren. Ophelia 2: 223236.Google Scholar
Ferguson, J. C. 1980. Fluxes of dissolved amino acids between sea water and Echinaster. Comp. Biochem. Physiol. 65A: 291295.Google Scholar
Fishelson, L. 1974. Ecology of the northern Red Sea crinoids and their epi- and endozoic fauna. Mar. Biol. 26: 183192.Google Scholar
Fisher, W. K. 1911. Asteroidea of the North Pacific and adjacent waters. U.S. Nat. Mus. Bull. 76, 420 pp.Google Scholar
Foerste, A. F. 1914 Notes on Agelacrinidae and Lepadocystinae, with descriptions of Thresherodiscus and Brockocystis. Denison Univ., Sci. Lab. Bull. 17(14): 399487.Google Scholar
Foerste, A. F. 1916. Comarocystites and Caryocrinites, cystids with pinnuliferous free arms. Ottawa Nat. 30: 6979, 85–93, 101–113.Google Scholar
Foerste, A. F. 1917 [1916]. Notes on Cincinnatian Fossil Types. Denison Univ., Sci. Lab. Bull. 18(4): 285355 (dated 1916, but Raymond, 1921, reports the article was distributed on 5 April 1917).Google Scholar
Fontaine, A. R. 1965. The feeding mechanism of the ophiuroid Ophiocomina nigra. J. Mar. Biol. Ass. U. K. 45: 373385.Google Scholar
Frankel, E. 1977. Previous Acanthaster aggregations in the Great Barrier Reef. Proc. 3rd Int. Coral Reef Symp., Miami. 1: 201208.Google Scholar
Franzen, C. 1977. Crinoid holdfasts from the Silurian of Gotland. Lethaia 10: 219234.Google Scholar
Frest, T. J. and Strimple, H. L. 1977a. Praepholidocidaris, a new echinoid from the Pella Formation (Mississippian) of Iowa. Proc. Iowa Acad. Sci. 84: 98105.Google Scholar
Frest, T. J. and Strimple, H. L. 1977b. Evolutionary and paleoecologic significance of abnormal Platycystites cristatus Bassler (Echinodermata: Paracrinoidea). J. Wash. Acad. Sci. 66: 221238.Google Scholar
Frest, T. J., Strimple, H. L. and McGinnis, M. R. 1977. A new species, of Platycystites (Echinodermata: Paracrinoidea) from the Middle Ordovician of Oklahoma. J. Wash. Acad. Sci. 66: 211221.Google Scholar
Frest, T. J., Strimple, H. L. and McGinnis, M. R. 1979. Two new crinoids from the Ordovician of Virginia and Oklahoma, with notes on pinnulation in the Disparata. J. Paleontol. 53: 399415.Google Scholar
Frest, T. J., Strimple, H. L. and Coney, C. C. 1979. Paracrinoids (Platycystitidae) from the Benbolt Formation (Blackriverian) of Virginia, J. Paleontol. 53: 380398.Google Scholar
Frest, T. J., Strimple, H. L. and Witzke, B. J. 1980. New Comarocystitida (Echinodermata: Paracrinoidea) from the Silurian of Iowa and Ordovician of Oklahoma. J. Paleontol. 54: 217228.Google Scholar
Frizzell, D. L. and Exline, H. 1955. Monograph of fossil holothurian sclerites. Missouri Univ. School Mines Metallurgy Bull. Tech. Ser. 89: 1204.Google Scholar
Frizzell, D. L. and Exline, H. 1966. Holothuroidea - fossil record. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, pt. U 2: U646-U672, Geol. Soc. Amer. and Univ. Kans., Lawrence.Google Scholar
Galloway, J. J. and Kaska, H. V. 1957. Genus Pentremites and its species. Geol. Soc. Amer. Mem. 69: 1104.Google Scholar
Gekker, R. F. 1940. Carpoidea, Eocrinoidea und Ophiocistia des Ordoviziums des Leningrader gebietes und Estlands. Trudy Paleontol. Inst. 9: 182.Google Scholar
Gekker, R. F. 1958. Novye dannye o rode Achradocystites (Echinodermata: Paracrinoidea). Eesti NSV Teaduste Akad. Geol. Inst. Uurim. 3: 145162.Google Scholar
Gemmill, J. F. 1915. On the ciliation of asterids, and on the question of ciliary nutrition in certain species. Proc. Zool. Soc. Lond. 1915: 119.Google Scholar
Giebel, C. 1857. Zur fauna des lithographischen Schiefers von Solenhofen. Zeitschr. ges. Naturwiss. Berlin 9: 373388.Google Scholar
Gill, E. D. and Caster, K. E. 1960. Carpoid echinoderms from the Silurian and Devonian of Australia. Bull. Amer. Paleontol. 41(185): 743.Google Scholar
Gilmore, R. G. and Gore, R. H. 1974. Observation on a sea urchin capturing a juvenile mullet. Fal. Scient. 37: 5256.Google Scholar
Gingerich, P. D. 1976. Paleontology and phylogeny: patterns of evolution at the species level in early Tertiary mammals. Amer. J. Sci. 276: 128.Google Scholar
Gingerich, P. D. 1977. Patterns of evolution in the Mammalian fossil record. In Hallam, A. (ed.), Patterns of Evolution, Elsevier Sci. Pub. Company, Amsterdam.Google Scholar
Glaessner, M. F. 1960. Precambrian Fossils from South Australia. Proc. 21st. Int. Geol. Congr., Copenhagen, p. 5964.Google Scholar
Glaessner, M. F. and Wade, Mary. 1969. The Late Precambrian fossils from Ediacara, South Australia. Palaeontol. 9: 599628.Google Scholar
Goldring, R. and Stephenson, D. G. 1972. The depositional environment of three starfish beds. Neues Jb. Geol. Palaontol. Mh. 10: 611624.Google Scholar
Goreau, T. F. 1964. On the predation of coral by the spiny starfish Acanthaster planci (L.) in the southern Red Sea. Sea Fish. Res. Sta. Haifa Bull. 35: 2326.Google Scholar
Gould, S. J. 1977. Ontogeny and phylogeny. 501 p., Belknap Press, Cambridge, Massachusetts.Google Scholar
Gould, S. J. and Eldredge, N. 1977. Punctuated equilibra: the tempo and mode of evolution reconsidered. Paleobiology 3: 115151.Google Scholar
Gray, J. E. 1840. A synopsis of the genera and species of the Class Hypostomata (Asterias, Linneaus). Ann. Mag. Nat. Hist. 6: 175184, 275–290.Google Scholar
Gregory, J. W. 1897. On Echinocystis and Palaeodiscus – two genera of Echinoidea. Geol. Soc. London, Quart. J. 53: 123136.Google Scholar
Gutschick, R. C. 1954. Holothurian sclerites from the Middle Ordovician of Northern Illinois. J. Paleontol. 28: 827829.Google Scholar
Gutschick, R. C. 1965. Pterotocrinus from the Kinkaid Limestone (Chester, Mississippian) of Illinois and Kentucky. J. Paleontol. 39: 636646.Google Scholar
Gutschick, R. C. and Canis, W. 1971. The holothurian sclerite genera Cucumarites, Eocaudina and Thuroholia - re-study of Eocaudina and Protocaudina from the Devonian of Iowa. J. Paleontol. 45: 327337 Google Scholar
Haeckel, E. 1896. Die Amphorideen und Cystoideen. Beiträge zur Morphologie und Phylogenie der Echinodermen. Festschr. Siebzigsten Geburtstage. Carl Gegenbaur. 1: 1179.Google Scholar
Hall, J. 1852. (Containing) Descriptions of the organic remains of the Lower Middle Division of the New York System. Nat. Hist. New York, pt. VI, Palaeontology 2: 1362.Google Scholar
Hall, J. 1871. Descriptions of some new species of fossils, from the shales of the Hudson River Group, in the vicinity of Cincinnati, Ohio. New York State Mus., 24th Ann. Rept. (adv. pub.): 8 p.Google Scholar
Hall, J. 1872. Descriptions of new species of Crinoidea and other fossils from the strata of the ago of the Hudson River Group and Trenton Limestone. New York State Mus., 24th Ann. Rept.: 205224.Google Scholar
Halleck, M. S. 1973. Crinoids, hardgrounds, and community succession: The Silurian Laurel-Waldron contact in southern Indiana. Lethaia 6: 239252.Google Scholar
Hampton, J. S. 1958. Frizzellus irregularis, a new holothurian sclerite from the Upper Bathonian of the Dorset coast, England. Micropaleontol. 4: 309316.Google Scholar
Hampton, J. S. 1959. Statistical analysis of holothurian sclerites. Micropaleontol. 5: 335349.Google Scholar
Hampton, J. S. 1960. A statistical study of Rhabdotites dorsetensis Hodson, Harris and Lawson, 1956. Micropaleontol. 6: 307314.Google Scholar
Haude, R. 1972. Bau und Funktion der Scyphocrinites-Lobolithen. Lethaia 5: 95125.Google Scholar
Haude, R. and Langenstrassen, F. 1976. Rotasaccus dentifer n.g. n.sp., ein devonischer Ophiocistioide (Echinodermata) mit “holothuroiden” Wandskleriten und “Echinoidem” Kauapparat. Paläont. Z. 50: 130150.Google Scholar
Haugh, B. N. 1980. Echinodermata. In, McGraw-Hill Yearbook of Science and Technology: 155158, McGraw-Hill Book Co., New York.Google Scholar
Haugh, B. N. and Bell, B. M. 1978. Visceral paleobiology, classification and genealogy of echinoderms. Geol. Soc. Am. Abstr. Prog. 10(7): 417418.Google Scholar
Haugh, B. N. and Bell, B. M. 1980. Fossilized viscera in primitive echinoderms. Science 209(4457): 653657.Google Scholar
Hedberg, H. D., ed. 1976. International Stratigraphic Guide. p. 1200. John Wiley & Sons.Google Scholar
Heddle, D. 1967. Versatility of movement and the origins of asteroids. In: Millott, N. (ed.), Echinoderm Biology, Symp. Zool. Soc. Lon. 20: 125141.Google Scholar
Heding, S. G. 1935. Holothuroidea Part I. Danish Ingolf-Exped. 4(9): 184.Google Scholar
Heezen, B. C. and Hollister, C. D. 1971. The Face of the Deep. Oxford Univ. Press, New York, 659 p.Google Scholar
Henderson, R. A. and Shergold, J. H. 1971. Cyclocystoides from early Middle Cambrian rocks of northwestern Queensland, Australia. Paleontol. 14: 704710.Google Scholar
Hendler, G. 1975. Adaptational significance of the patterns of ophiuroid development. Am. Zool. 15: 691715.Google Scholar
Hess, H. 1965. Trias-Ophiuren aus Deutschland, England, Italien und Spanien. Mitt. Bayer. St. Paläont. Hist. Geol. 5: 151177.Google Scholar
Hess, H. 1972. Eine echinodermen-fauna aus dem mittleren Dogger des Aargauer Jura. Schweiz. Paläontol. Abhand. 92: 188.Google Scholar
Hess, H. 1973. Neue Echinodermenfunds aus dem mittleren Dogger des Aarguaer Juras. Eclogae geol. Helv. 66: 625656.Google Scholar
Hess, H. 1975. Die fossilen Echinodermen des Schweizer Juras. Veröffentl. Naturhist. Mus. Basel 8: 1130.Google Scholar
Holland, N. D. and Holland, L. Z. 1969. A bibliography of echinoderm biology, continuing Hyman's 1955 bibliography through 1965. Publ. Staz. Zool. Napoli 37: 441543.Google Scholar
Horowitz, A. S. and Strimple, H. L. 1974. Chesterian echinoderm zonation in eastern United States. Congr. Int. Strat. Geol. Carb. 1971, C. R. 3: 207220.Google Scholar
Hotchkiss, F. H. C. 1970. North American Ordovician Ophiuriodea. The Genus Taeniaster Billings, 1858 (Protasteridae). Proc. Biol. Soc. Wash. (D.C.) 83: 5976.Google Scholar
Hotchkiss, F. H. C. 1976. Devonian ophiuroids from New York State: reclassification of Klasmura, Antiquaster, and Stenaster into Suborder Scalarina nov., Order Stenurida. New York St. Mus. Bull. 425: 138.Google Scholar
Hotchkiss, F. H. C. 1977. Ophiuroid Ophiocanops (Echinodermata) not a living fossil. J. Nat. Hist. 11: 377380.Google Scholar
Hotchkiss, F. H. C. 1978. Studies on echinoderm ray homologies: Loven's Law applies to paleozoic ophiuroids. J. Paleontol. 52: 537544.Google Scholar
Hotchkiss, F. H. C. and Clark, A. M. 1976. Restriction of the family Poraniidae sensu Spencer & Wright. 1966 (Echinodermata: Asteroidea). Bull. Brit. Mus. (Nat. Hist.) (Zool.) 30: 263268.Google Scholar
Hulings, N. C. and Hemley, D. W. 1963. An investigation of the feeding habits of two species of sea stars. Bull. Mar. Sci. Gulf Carrib. 13:354359.Google Scholar
Hutchinson, G. E. 1959. Homage to Santa Rosalia or why are there so many different kinds of animals. Am. Nat. 93: 145149.Google Scholar
Hymen, L. H. 1955. Echinodermata. The Invertebrates 4: 1763, McGraw-Hill, New York.Google Scholar
Jaekel, O. 1899. Stammesgeschichte der Pelmatozoen. Bd. 1, Thecoidea und Cystoidea, 1–442. J. Springer, Berlin.Google Scholar
Jaekel, O. 1900. Über Carpoideen, eine neue Klasse von Pelmatozoen. Zeit. dt. geol. Ges. 52: 661677.Google Scholar
Jaekel, O. 1918. Phylogenie und System der Pelmatozoen. Paläont. Zeit. 3: 1128.Google Scholar
Jaekel, O. 1927. Cyathotheca suecica (n.g.), n. sp., eine Thecoidee des schwedischen Ordoviciums: K. Svenska. Betenskapsakad., Arkiv. Zool. 19A(5): 15.Google Scholar
Jefferies, R. P. S. 1967. Some fossil chordates with echinoderm affinities. Symp. Zool. Soc. Lond. 20: 163208.Google Scholar
Jefferies, R. P. S. 1968. The subphylum Calcichordata (Jefferies 1967) primitive fossil chordates with echinoderm affinities. Bull Brit. Mus. (Nat. Hist.) (Geol.), 16: 243339.Google Scholar
Jefferies, R. P. S. 1969. Ceratocystis perneri Jaekel - a Middle Cambrian chordate with echinoderm affinites. Palaeontol. 12: 494535.Google Scholar
Jefferies, R. P. S. 1973. The Ordovician fossil Lagynocystis pyramidalis (Barrande) and the ancestry of Amphioxus. Phil. Trans. R. Soc. Lond. B 265: 409469.Google Scholar
Jefferies, R. P. S. 1975. Fossil evidence concerning the origin of the chordates. Symp. Zool. Soc. Lond. 36: 253318.Google Scholar
Jefferies, R. P. S. 1979. Calcichordata. In Jablonski, D. (ed.), Encyclopaedia of Paleontology, New York: Reinhold.Google Scholar
Jefferies, R. P. S. and Lewis, D. N. 1978. The English Silurian fossil Placocystites forbesianus and the ancestry of the vertebrates. Phil. Trans. Roy. Soc. London, Biol. Sci. 282(990): 205323.Google Scholar
Jefferies, R. P. S. and Prokop, R. J. 1972. A new calcichordate from the Ordovician of Bohemia and its anatomy, adaptations and relationships. Biol. J. Linn. Soc. 4: 69115.Google Scholar
Johnson, J. G. and Niebuhr, W. W. 1976. Anatomy of an assemblage zone. Geol. Soc. Amer. Bull. 87: 16931703.Google Scholar
Katz, S. G. and Sprinkle, J. 1976. Fossilized eggs in a Pennsylvanian blastoid. Science 192 (4244): 11371139.Google Scholar
Kauffman, E. G. and Hazel, J. E. 1977. Preface. In Kauffman, E. G. and Hazel, J. E. (eds.), Concepts and Methods of Biostratigraphy. p. iiv. Dowden, Hutchinson and Ross.Google Scholar
Kesling, R. V. 1960. Hydropores in edrioasteroids. Univ. Michigan, Contrib. Mus. Paleontol. 15(8): 139192.Google Scholar
Kesling, R. V. 1967. Edrioasteroid with unique shape from Mississippian strata of Alberta. J. Paleontol. 41: 197202.Google Scholar
Kesling, R. V. 1968a. Cystoids. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, pt. S 1: S85-S267, Geol. Soc. Amer. and Univ. Kans., Lawrence.Google Scholar
Kesling, R. V. 1968b. Paracrinoids. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, pt. S 1: S268-S288.Google Scholar
Kesling, R. V. 1969. Three Permian starfish from western Australia and their bearing on revision of the Asteroidea. Contrib. Mus. Paleontol. Univ. Mich. 22: 361376.Google Scholar
Kesling, R. V. and Chilman, R. B. 1975. Strata and megafossils of the Middle Devonian Silica Formation. Michigan Univ. Mus. Paleontol. Papers 8: 1408.Google Scholar
Kesling, R. V. and Le Vasseur, D. 1971. Strataster ohioensis, a new early Mississippian brittle-star, and the paleoecology of its community. Contrib. Mus. Paleontol. Univ. Mich. 23: 305341.Google Scholar
Kesling, R. V. and Paul, C. R. C. 1968. New species of Porocrinidae and brief remarks upon these unusual crinoids. Contrib. Mus. Paleontol. Univ. of Michigan 22: 132.Google Scholar
Kesling, R. V. and Paul, C. R. C. 1971. Agostocrinus and Acolocrinus, two new Ordovician crinoids with peculiar ray and respiratory structures. Contrib. Michigan Univ. Mus. Paleontol. 23: 221337.Google Scholar
Kier, P. M. 1965. Evolutionary trends in Paleozoic echinoids. J. Paleontol. 39: 436465.Google Scholar
Kier, P. M. 1973. The echinoderms and Permian-Triassic time. Mem. Canadian Soc. Petrol. Geol. 2: 622629.Google Scholar
Kier, P. M. 1974. Evolutionary trends and their functional significance in the post-Paleozoic echinoids. J. Paleontol. 48 suppl. (Memoir 5): 195.Google Scholar
Kier, P. M. and Grant, R. E. 1965. Echinoid distribution and habits, Key Largo Coral Reef Preserve, Florida. Smithsonian Misc. Coll. 149(6): 168.Google Scholar
Koch, D. L. and Strimple, H. L. 1968. A new Upper Devonian cystoid attached to a discontinuity surface. Iowa Geol. Surv. Rept. Inv. 5: 149.Google Scholar
Kolata, D. R. 1973. Scalenocystites strimplei, a new Middle Ordovician belemnocystitid solute from Minnesota. J. Paleontol. 47: 969975.Google Scholar
Kolata, D. R. 1975. Middle Ordovician echinoderms from northern Illinois and southern Wisconsin. J. Paleontol. 49 suppl. (Memoir 7): 174.Google Scholar
Kolata, D. R., Strimple, H. L. and Levorson, C. O. 1977. Revision of the Ordovician carpoid family Iowacystidae. Palaeontol. 20: 529557.Google Scholar
Kolata, D. R. and Guensburg, T. E. 1979. Diamphidiocystis a new mitrate “carpoid” from the Cincinatian (Upper Ordovician) Maquoketa Group in southern Illinois. J. Paleontol. 53: 11211135.Google Scholar
Kozur, H. and Somon, O. J. 1972. Contribution to the Triassic microfauna and stratigraphy of the Betic Zone (Southern Spain). Rev. Espanola Micropal. Numero Extraord. 1972: 143158.Google Scholar
Kristan-Tollman, E. 1964. Holothurien-Sklerite aus dem Torton des Burgenlandes, Österreich. Österreich. Akad. Wiss. Math. - Naturwiss. Kl. Sitzungsber. 173(1–2): 75100.Google Scholar
Kristan-Tollman, E. 1965. Revision der Arbeit von K. Frentzen: “Funde von Holothurien-Kalkkörperchen im Jura des Oberrheingebeites”. Beiträge Naturkundl. Forsch. Sudwestdeutschl. 24(1): 1720.Google Scholar
LaBarbera, M. 1978. Particle capture by a Pacific brittle star: experimental test of the aerosol suspension feeding model. Science 201: 11471149.Google Scholar
LaTouche, R. W. 1978. The feeding behaviour of the featherstar Antedon bifida (Echinodermata: Crinoidea). J. Mar. Biol. Assoc., U.K. 58: 877890.Google Scholar
Lamarck, J. B. P. 1816. Histoire naturelle des animaux sans vertebres 2: 547568. Paris.Google Scholar
Lane, N. G. 1963a. Two new Mississippian camerate (Batocrinidae) crinoid genera. J. Paleontol. 37: 691702.Google Scholar
Lane, N. G. 1963b. The Berkeley crinoid collection from Crawfordsville, Indiana. J. Paleontol. 37: 10011008.Google Scholar
Lane, N. G. 1971. Crinoids and reefs. Proc. North American Paleontological Convention, pt. J: 14301443.Google Scholar
Lane, N. G. 1973. Paleontology and paleoecology of the Crawfordsville fossil site (Upper Osagian: Indiana). Univ. Calif. Publ. Geol. Sci. 99: 1141.Google Scholar
Lane, N. G. 1976. A crinoid tegmen composed of holothurian sclerites. J. Paleontol. 50: 240244.Google Scholar
Laudon, L. R. 1933. The stratigraphy and paleontology of the Gilmore City Formation of Iowa. Univ. Iowa Studies Nat. Hist. 15: 174.Google Scholar
Laudon, L. R. 1937. Stratigraphy of northern extension of Burlington Limestone in Missouri and Iowa. Amer. Assoc. Petrol. Geol. Bull. 21: 11581167.Google Scholar
Laudon, L. R. 1973. Stratigraphic crinoid zonation in Iowa Mississippian rocks. Proc. Iowa Acad. Sci. 80: 2533.Google Scholar
Laudon, L. R. and Beane, B. H. 1937. The crinoid fauna of the Hampton Formation at LeGrand, Iowa. Univ. Iowa Studies Nat. Hist. 17: 225273.Google Scholar
Laudon, L. R. and Bowsher, A. L. 1941. Mississippian formations of Sacramento Mountains, New Mexico. Amer. Assoc. Petrol. Geol. Bull. 25: 21072160.Google Scholar
Laudon, L. R. and Bowsher, A. L. 1949. Mississippian Formations of southwestern New Mexico. Geol. Soc. Amer. Bull. 60: 188.Google Scholar
Laudon, L. R., Parks, J. M. and Spreng, A. C. 1952. Mississippian crinoid fauna from the Banff Formation, Sunwapta Pass, Alberta. J. Paleontol. 26: 544575.Google Scholar
Laudon, L. R. and Severson, J. L. 1953. New crinoid fauna, Mississippian Lodgepole Formation, Montana. J. Paleontol. 27: 505536.Google Scholar
Lawrence, J., Erwin, K. and Turner, R. 1974. Stomach contents of Luidia clathrata (Asteroidea). Quart. Jour. Florida Acad. Sci. 37, Supp. 1, p. 8 (abstract).Google Scholar
Lehmann, W. M. 1958. Eine Holothurie zusammen mit Palaenectria devonica und einem Brachiopoden in den unterdevonischen Dachscheifern des Hunsrücks durch Röntgenstrahlen entdeckt. Notizbl. hess. Landesamt Bodenforsch. 86: 8186.Google Scholar
Leuckart, C. G. F. R. 1848. Über die morphology und die verwantschafts verhaltnisee der wirbellosen tiere. 180 p. Braunschweig.Google Scholar
Lucas, J. S. and Jones, M. M. 1976. Hybrid crown-of-thorns starfish Acanthaster planci x A. brevispinus) reared to maturity in the laboratory. Nature 263: 409412.Google Scholar
Ludwig, H. 1878. Beiträge zur Anatomie der Ophiuren. Zeit. Wissen. Zool. 31: 346394.Google Scholar
MacGinitie, G. E. and MacGinitie, N. 1949. Natural History of Marine Animals. McGraw-Hill, New York. 473 pp.Google Scholar
Macurda, D. B. Jr. 1966. The ontogeny of the Mississippian blastoid Orophocrinus. J. Paleontol. 40: 92124.Google Scholar
Macurda, D. B. Jr. 1968. Development and hydrodynamics of blastoids, and Stratigraphic and geographic distribution. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, pt. S 2: 356381, 385–387, Geol. Soc. Amer. and Univ. Kans., Lawrence.Google Scholar
Macurda, D. B. Jr. 1973. The stereomic microstructure of the blastoid endoskeleton. Univ. Mich. Mus. Paleontol. Contrib. 24: 6983.Google Scholar
Macurda, D. B. Jr. 1975. The Pentremites (Blastoidea) of the Burlington Limestone (Mississippian). J. Paleontol. 49: 346373.Google Scholar
Macurda, D. B. Jr. 1976. Skeletal modifications related to food capture and feeding behavior of the basketstar Astrophyton. Paleobiology 2: 17.Google Scholar
Macurda, D. B. Jr. 1979. The Devonian blastoids of Bolivian. J. Paleontol. 53: 13611373.Google Scholar
Macurda, D. B. Jr. 1980. The systematics of the fissiculate blastoids. Univ. Mich., Mus. Paleon. Papers, in press.Google Scholar
Macurda, D. B. Jr. and Meyer, D. L. 1974. Feeding posture of modern stalked crinoids. Nature 247: 394396.Google Scholar
Madsen, F. J. 1955. A note on the sea star genus Acanthaster. Vidensk. Meddr. Dansk. naturh. Foren. 117: 179192.Google Scholar
Madsen, F. J. 1956. Eldonia, a Cambrian siphonophore - formerly interpreted as a holothurian. Vidensk. Medd. Dansk naturh. Foren. 118: 714.Google Scholar
Madsen, F. J. 1966. The Recent sea-star Platasterias and the fossil Somasteroidea. Nature 209(5030): 1367.Google Scholar
Magnus, D. B. E. 1967. Ecological and ethological studies and experiments on the echinoderms of the Red Sea. Studies Trop. Oceanogr., no. 5: 635664.Google Scholar
Manten, A. A. 1971. Silurian reefs of Gotland. Developments in Sedimentology, v. 13, 539 p., Elsevier.Google Scholar
Marsh, J. A. Jr. and Tsuda, R. T. 1973. Population levels of Acanthaster planci in the Mariana and Caroline Islands 1969–1972. Atoll Res. Bull. 170: 116.CrossRefGoogle Scholar
Matsumoto, H. 1915. A new classification of the Ophiuroidea with descriptions of new genera and species. Proc. Acad. Nat. Sci. Phil. 67: 4392.Google Scholar
Matsumoto, H. 1929. Outline of a classification of Echinodermata. Sci. Rept. Tôhoku Imp. Univ. Sendai, Second Ser. (Geology), 13: 2733.Google Scholar
Matyja, B. A., Matyja, H. and Szulczewski, M. 1973. The genus Eocaudina Martin (Holothuroidea) from the Devonian of Poland. Acta Geol. Polonica 23: 135146.Google Scholar
Mauzey, K. P., Birkeland, C. and Dayton, P. K. 1968. Feeding behavior of asteroids and escape responses of their prey in the Puget Sound region. Ecology 49: 603619.Google Scholar
McIntosh, G. C. and Macurda, D. B. 1979. Devonian echinoderm biostratigraphy. Spec. Papers Palaeontol. 23: 331334.Google Scholar
McKerrow, W. S. (ed.). 1978. Ecology of Fossils. Duckworth and Co., Ltd., London, 384 p.Google Scholar
McKnight, D. G. 1975. Classification of somasteroids and asteroids (Asterozoa: Echinodermata). J. Roy. Soc. New Zealand. 5: 1319.Google Scholar
McLaren, D. J. 1977. The Silurian-Devonian Boundary Committee. A final report. In Martinsson, A. (ed.), The Silurian-Devonian Boundary. IUGS ser. A (5): 134.Google Scholar
McLaughlin, R. E. 1973. Observations on the biostratigraphy and stratigraphy of Knox County, Tennessee. Tenn. Div. Geol. Bull. 70: 2562.Google Scholar
Meek, F. B. and Worthen, A. H. 1868. Remarks on some types of Carboniferous Crinoidea, with descriptions of new genera and species of the same, and one echinoid. Philadelphia Acad. Nat. Sci., Proc. 5: 335359.Google Scholar
Meyer, D. L. 1973. Feeding behavior and ecology of shallow-water unstalked crinoids (Echinodermata) in the Caribbean Sea. Mar. Biol. 22: 105129.Google Scholar
Meyer, D. L. 1979. Morphological length and spacing of the tube feet in crinoids (Echinodermata) and their role in suspension feeding. Mar. Biol. 51: 361369.Google Scholar
Meyer, D. L. and Lane, N. G. 1976. The feeding behavior of some Paleozoic crinoids and Recent basket-stars. J. Paleontol. 50: 472480.Google Scholar
Meyer, D. L. and Macurda, D. B. Jr. 1977. Adaptive radiation of the comatulid crinoids. Paleobiology 3: 7482.Google Scholar
Meyer, D. L. and Macurda, D. B. Jr. 1980. Ecology and distribution of the shallow-water crinoids (Echinodermata) of the Palau Islands and Guam (Western Pacific). Micronesica 16(1): 5999.Google Scholar
Meyer, D. L., Messing, C. G. and Macurda, D. B. Jr. 1978. Zoogeography of tropical western Atlantic Crinoidea (Echinodermata). Bull. Mar. Sci. 28: 412441.Google Scholar
Michelsen, O. 1973. On Liassic holothurian and ostracod assemblages from the Danish Embayment. Danm. geol. Unders. Arbog for 1972: 4968.Google Scholar
Mintz, L. W. 1970. The Edrioblastoidea: reevaluation based on a new specimen of Astrocystites from the Middle Ordovician of Ontario. J. Paleontol. 44: 872880.Google Scholar
Moore, H. B. 1966. Ecology of echinoids. In Boolootian, R. A. (ed.), Physiology of Echinodermata, p. 7385 Wiley Interscience, New York.Google Scholar
Moore, R. C. 1939. Classification of fragmentary crinoid remains. Denison Univ. Bull., Jour. Sci. Lab. 33: 165220.Google Scholar
Moore, R. C., (ed.), 1966–78. Treatise on Invertebrate Paleontology. Echinodermata pt. S; T; U: S1-S650; T1-T1027; U1-U695. Geol. Soc. Amer. and Univ. Kans., Lawrence.Google Scholar
Moore, R. C. 1977. Echinodermata. McGraw-Hill Encyclopedia of Science and Technology: 403416. McGraw-Hill Book Co., New York.Google Scholar
Moore, R. C. and Jeffords, R. M. 1968. Classification and nomenclature of fossil crinoids based on studies of dissociated parts of their columns. Univ. Kansas Paleontol. Contrib. Art. 46 (Echinodermata 9): 186.Google Scholar
Moore, R. C., Jeffords, R. M. and Miller, T. H. 1968. Morphological features of crinoid columns. Univ. Kansas Paleontol. Contrib. Art. 45 (Echinodermata 8): 130.Google Scholar
Moore, R. C., and Plummer, R. B. 1940. Crinoids from the Upper Carboniferous and Permian strata in Texas. Univ. Texas Pub. 3945: 1468.Google Scholar
Moore, R. C., and Teichert, C. 1978. Part T. Echinodermata 2. Treatise on Invertebrate Paleontology, Geol. Soc. Amer. and Univ. Kans., Lawrence, 1027 p.Google Scholar
Mortensen, T. 1937. Some echinoderm remains from the Jurassic of Württemburg. Kgl. Danske Vid. Selsk. Biol. Medd. 13 (10): 128.Google Scholar
Mosher, C. 1980. Distribution of Holothuria arenicola Semper in the Bahamas with observations on habitat, behavior, and feeding activity (Echinodermata: Holothuroidea). Bull. Mar. Sci. 30: 112.Google Scholar
Möstler, H. 1968. Holothurien-Sklerite aus oberanisischen Hallstätterkalken (Ostalpen, Bosnien, Türkei). Veröffentl. der Univ. Innsbruck 2: 145.Google Scholar
Möstler, H. 1969. Entwicklungsreihen triassischer Holothurien-Sklerite. Veröffentl. der Univ. Innsbruck 18: 153.Google Scholar
Möstler, H. 1977. Zur Palökologie triadischer Holothurien (Echinodermata). Ber. Nat. -med. Ver. Innsbruck 64: 1340.Google Scholar
Muller, A. H. 1969. Reste seltener Holothurien (Echinodermata) aus dem Mesozoikum Europas. Monatsb. Deutsch. Akad. Wiss. Berlin 11(8/9): 662671.Google Scholar
Nichols, D. 1960. The histology and activities of the tube feet of Antedon bifida. Q. J. Micros. Sci. 101: 105117.Google Scholar
Nichols, D. 1962. Echinoderms. Hutchinson Univ. Press, London, 200 pp.Google Scholar
Nichols, D. 1966. Functional morphology of the water-vascular system. In Boolootian, R. A. (ed.), Physiology of Echinodermata, p. 219244. Wiley Interscience, New York, 822 p.Google Scholar
Nichols, D. 1969. Echinoderms. Hutchinson University Library. (4th ed) 192 pp. Hutchinson and Co. Ltd.; London Google Scholar
Nussman, D. G. 1975. Paleoecology and pyritization. In Kesling, R. V. and Chilman, R. B., Strata and megafossils of the Middle Devonian Silica Formation. Michigan Univ. Mus. Paleontol. Papers 8: 173223.Google Scholar
Ogden, J. C. 1977. Carbonate-sediment production by parrot fish and sea urchins on Caribbean reefs. In Frost, S. H., Weiss, M. P., and Saunder, J. B. (eds.), Reefs and Related Carbonates - Ecology and Sedimentology. p. 281288. Am. Ass. Petrol. Geol., Studies in Geol. 4: 1–421.Google Scholar
Paine, R. T. 1966. Food web complexity and species diversity. Am. Nat. 100: 6575.Google Scholar
Palmer, T. J. and Fursich, F. T. 1974. The ecology of a Middle Jurassic hardground and crevice fauna. Palaeontology. 17: 507524.Google Scholar
Palmer, T. J. and Palmer, C. D. 1977. Faunal distribution and colonization strategy in Middle Ordovician hardground community. Lethaia 10: 179199.Google Scholar
Parsley, R. L. 1972. The Belemnocystitidae: Solutan homeomorphs of the Anomalocystitidae. J. Paleontol. 46: 341347.Google Scholar
Parsley, R. L. 1975. Systematics and functional morphology of Columbocystis, a Middle Ordovician “Cystidean” (Echinodermata) of uncertain affinities. Bull. Amer. Paleontol. 67(287): 344361.Google Scholar
Parsley, R. L. 1978. Thecal morphology of the Ordovician paracrinoid Comarocystites (Echinodermata). J. Paleontol. 52: 472479.Google Scholar
Parsley, R. L. and Caster, K. E. 1965. North American Soluta (Carpoidea, Echinodermata). Bull. Amer. Paleontol. 49: 109174.Google Scholar
Parsley, R. L. and Caster, K. E. 1975. Zoological affinities and functional morphology of the Mitrata (Echinodermata). Geol. Soc. Amer. Abstr. Prog., 1975, Ann. Meeting, 7: 12251226.Google Scholar
Parsley, R. L. and Mintz, L. W. 1975. North American Paracrinoidea (Ordovician: Paracrinozoa, new Echinodermata). Bull. Amer. Paleontol. 68(288): 1115.Google Scholar
Paul, C. R. C. 1965. On the occurrence of Comarocystites or Sinclaircystis (Paracrinoidea: Comarocystitidae) in the starfish bed, Threave Glen, Girvan. Geol. Mag. 102: 474477.Google Scholar
Paul, C. R. C. 1967a. The functional morphology and mode of life of the cystoid Pleurocystites, E. Billings, 1854. Symp. Zool. Soc. London 20: 105123.Google Scholar
Paul, C. R. C. 1967b. Osculocystis, a new British Silurian cystoid. Geol. Mag. 104:449454.Google Scholar
Paul, C. R. C. 1968a. Macrocystella Callaway, the earliest glyptocystitid cystoid. Palaeontology. 11: 580600.Google Scholar
Paul, C. R. C. 1968b. Morphology and function of dichoporite porestructures in cystoids. Palaeontology. 11: 697730.Google Scholar
Paul, C. R. C. 1972a. Morphology and function of exothecal porestructures in cystoids. Paleontology. 15: 128.Google Scholar
Paul, C. R. C. 1972b. Cheirocystella antiqua gen. et sp. nov. from the Lower Ordovician of western Utah and its bearing on the evolution of the Cheirocrinidae (Rhombifera: Glyptocystitida). Brigham Young Univ., Geol. Studies 19(1): 1563.Google Scholar
Paul, C. R. C. 1976. Palaeogeography of primitive echinoderms in the Ordovician. In Bassett, M. G. (ed.), The Ordovician System, p. 553574. Univ. Wales Press.Google Scholar
Paul, C. R. C. 1977a. Feeding and respiration rates in fossil echinoderms. J. Paleontol. 51 supplement: 20.Google Scholar
Paul, C. R. C. 1977b. Evolution of primitive echinoderms. In Hallam, A. (ed.), Patterns of Evolution, p. 123158, Elsevier.Google Scholar
Pawson, D. L. 1963. The holothurian fauna of Cook Strait, New Zealand. Zool. Publs. Victoria Univ. Wellington 36: 138.Google Scholar
Pawson, D. L. 1965. The bathyal holothurians of the New Zealand region. Zool. Publs. Victoria Univ. Wellington 39: 133.Google Scholar
Pawson, D. L. 1966a. Phylogeny and evolution of holothuroids. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, pt. U 2: U641-U646. Geol. Soc. Amer. and Univ. Kans., Lawrence.Google Scholar
Pawson, D. L. 1966b. Ecology of Holothurians. In Boolootian, R. A. (ed.), Physiology of Echinodermata, p. 6371, Wiley Interscience, New York, 822 p.Google Scholar
Pawson, D. L. 1968. The echinozoan fauna of the New Zealand Subantarctic Islands, Macquarie Island and the Chatham Rise. New Zealand Dept. Scient. Industr. Res. Bull. 187: 135.Google Scholar
Pawson, D. L. 1970. The marine fauna of New Zeland: sea cucumbers (Echinodermata: Holothuroidea). New Zealand Dept. Scient. Industr. Res Bull. 201: 169.Google Scholar
Pawson, D. L. 1978. Some aspects of the biology of deep-sea echinoderms. Thalassia Jugoslavia. (1976) 12: 287293.Google Scholar
Pawson, D. L. and Fell, H. B. 1965. A revised classification of the dendrochirote holothurians. Breviora 214: 17.Google Scholar
Pearse, J. S. 1969. Treatise on Invertebrate Paleontology. Part S: Echinodermata 1 (a review). Quart. Rev. Biol. 44: 298.Google Scholar
Pearson, R. G. and Endean, R. 1969. A preliminary study of the coral predator Acanthaster planci (L.) (Asteroidea) on the Great Barrier Reef. Fish. Notes Qld. 3: 2755.Google Scholar
Pequegnat, W. E. and Jeffrey, L. M. 1979. Petroleum deep benthic ecosystems of the Gulf of Mexico and Caribbean Sea. Contrib. Mar. Sci. 22: 6376.Google Scholar
Philip, G. M. 1965. Ancestry of sea-stars. Nature 208(5012): 766768.Google Scholar
Pompeckj, J. F. 1896. Die Fauna des Cambrium von Tejrouic und Skrej in Böhmen: K.-K Geol. Reichsanst. Wien, Jahrb. 45(1895): 495614.Google Scholar
Rasmussen, H. W. 1951. Cretaceous Ophiuroidea from Germany, Sweden, Spain and New Jersey. Meddr. dansk. Geol. foren. 12: 4757.Google Scholar
Rasmussen, H. W. 1961. A monograph on the Cretaceous Crinoidea. Biol. Skr. Dan, Vid. Selsk. 12(1): 1428.Google Scholar
Rasmussen, H. W. 1977. Function and attachment of the stem in Isocrinidae and Pentacrinitidae: review and interpretation. Lethaia 10:5157.Google Scholar
Rasmussen, H. W. 1978. Articulata. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, pt. T 3: T813-T927, Geol. Soc. Amer. and Univ. Kans., Lawrence.Google Scholar
Raup, D. M. and Stanley, S. M. 1978. Principles of Paleontology (2nd ed.). W. H. Freeman and Company, San Francisco, 481 p.Google Scholar
Reese, E. S. 1966. The complex behavior of echinoderms. In Boolootian, R. A. (ed.) Physiology of Echinodermata, p. 157218, Wiley Interscience, New York, 822 p.Google Scholar
Regnéll, G. 1945. Non-crinoid Pelmatozoa from the Paleozoic of Sweden. Medd. Lunds Geol. Mineralog. Inst. 108:1225.Google Scholar
Regnéll, G. 1950. Agelacrinites ephraemovianus (Bogolubov) and Lepidodiscus fistulosus Anderson (Edrioasteroidea). Kungl. Fysiogr. Sallsk. Lund Forh. 20(20): 218237. also reprinted as Skr. Fran Min. Paleontol. Inst., Lund. 3: 1–14.Google Scholar
Regnéll, G. 1960. “Intermediate” forms in Early Palaeozoic echinoderms. 21st Inter. Geol. Congress, Pt. 22: 7180.Google Scholar
Regnéll, G. 1966. Edrioasteroids. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, pt. U 1: U136-U173, Geol. Soc. Amer. and Univ. Kans., Lawrence.Google Scholar
Reso, A. and Wegner, K. 1964. Echinoderm (holothurian?) sclerites from the Bromide Formation (Blackriverian) of southern Oklahoma. J. Paleontol. 38: 8994.Google Scholar
Reyss, D. and Soyer, J. 1965. Etude de deux vallées sous-marines de la mer Catalane. Bull. Inst. océanogr. Monaco 65(1356): 27 p.Google Scholar
Robison, R. A. 1965. Middle Cambrian eocrinoids from western North America. J. Paleontol. 39:355364.Google Scholar
Robison, R. A. and Sprinkle, J. 1969. Ctenocystoidea: new class of primitive echinoderms. Science 166: 1512–14.Google Scholar
Roemer, F. 1852. Monographie der fossilen crinoiden familie der Blastoideen und der Gattung Pentatrematites in Besondern. Archiv für Naturgeschichte 17: 323397.Google Scholar
Roman, J. and Perreau, M. 1973. Sur des échinodermes (Ophiurites sp., O. eocoenicus, Circopeltis (aff.) couloni) du Bartonien du Val-d'Oise. Ann. Paléontol. (Invert) 59: 105118.Google Scholar
Rosenkranz, D. 1971. Zur Sedmentologie und Ökologie von Echinodermen-Lagerstätten. Neues Jb. Geol. Palëontol. Abh. 138: 221258.Google Scholar
Rowe, A. W. 1899. An analysis of the genus Micraster, as determined by rigid zonal collecting from the zone of Rhynchonella cuvieri to that of Micraster cor-anguinum Quart. J. Geol. Soc. Lond. 55: 494547.Google Scholar
Rubenstein, D. I. and Koehl, M. A. R. 1977. The mechanisms of filter feeding: some theoretical considerations. Am. Nat. 11: 981994.Google Scholar
Ruedemann, R. 1933. Camptostroma, a Lower Cambrian floating hydrozoan. U.S. Nat. Mus. Proc. 82(13): 18.Google Scholar
Ruppel, S. C. and Walker, K. R. (eds.). 1977. The ecostratigraphy of the Middle Ordovician of the Southern Appalachians (Kentucky, Tennessee, and Virginia), U.S.A.: a field excursion. Univ. Tenn. Dept. Geol. Sci. Studies Geol. 1: 1171.Google Scholar
Rutman, J. and Fishelson, L. 1969. Food composition and feeding behavior of shallow-water crinoids at Eilat (Red Sea). Mar. Biol. 3: 4657.Google Scholar
Schäfer, W. 1972. Ecology and palaeoecology of marine environments. Univ. Chicago Press, 568 pp.Google Scholar
Schallreuter, R. 1968. Die ältesten sicheren Holothuroideenreste (Ordoviz). N. Jb. Paläont. M. 9: 522529.Google Scholar
Schallrenter, R. 1975. Ein neuer ordovizischer Holothuriensklerit aus Öjlemyrgescheiben der Insel Gotland. N. Jb. Paläont. Mh. 12: 727733.Google Scholar
Scheltema, R. S. 1977. Dispersal of marine invertebrate organisms: paleobiogeographic and biostratigraphic implications. In Kauffman, E. G. and Hazel, J. E. (eds.), Concepts and Methods of Biostratigraphy. p. 73108. Dowden, Hutchinson and Ross.Google Scholar
Schmidt, F. 1879. Über Cyathocystis plautinae, eine neue Cystideenform aus Reval. Russische-kaiserlichen Mineral. Gesell., St. Petersburg, Verh., ser. 2, 15:17 [The Volume carries the date 1880, Regnéll (1967) reports “separate of the present paper appeared in October 1878 (fide O. Jaekel. 1899, p. 439)”].Google Scholar
Schoener, T. W. 1974. Resource partitioning in ecological communities. Science 185: 2739.Google Scholar
Schuchert, C. 1915. Revision of Paleozoic stelleroidea with special reference to North American Asteroidea. Bull. U.S. Nat. Mus. 88: 1311.Google Scholar
Seilacher, A. 1979. Constructional morphology of sand dollars. Paleobiology 5: 91121.Google Scholar
Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology. 4: 223251.Google Scholar
Sepkoski, J. J. Jr. 1979. A kinetic model of Phanerozoic taxonomic diversity II. Early Phanerozoic families and multiple equilibria. Paleobiology 5: 222251.Google Scholar
Shaw, A. B. 1964. Time in Stratigraphy. p. 1365, McGraw-Hill.Google Scholar
Spandel, E. 1898. Die Echinodermen aus deutschen Zechsteins. Naturh. Ges. Su Nürnberg Abh. 11: 1745.Google Scholar
Spencer, W. K. 1925. British Palaeozoic Asterozoa, Part 6. Lon. Paleontogr. Soc. Monog. 67(356): 237324.Google Scholar
Spencer, W. K. 1927. British Palaeozoic Asterozoa, Part 7. Lon. Paleontogr. Soc. Monog. 79(366): 325388.Google Scholar
Spencer, W. K. 1930. British Palaeozoic Asterozoa, Part 8. Lon. Paleontogr. Soc. Mong. 82(376): 389436.Google Scholar
Spencer, W. K. 1951. Early Palaeozoic starfish. Roy Soc. Lon. Philos. Trans. Ser B, 235(623): 87129.Google Scholar
Spencer, W. K. and Wright, C. W. 1966. Asterozoans. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology U 1: U4-U107, Geol. Soc. Amer. and Univ. Kans., Lawrence.Google Scholar
Sprinkle, J. 1971. Stratigraphic distribution of echinoderm plates in the Antelope Valley Limestone of Nevada and California. U.S. Geol. Surv. Prof. Paper 750-D: D89D98.Google Scholar
Sprinkle, J. 1973a. Morphology and evolution of blastozoan echinoderms. Harvard Univ. Mus. Compar. Zool. Spec. Pub. 283 p.Google Scholar
Sprinkle, J. 1973b. Tripatocrinus, a new hybocrinid crinoid based on disarticulated plates from the Antelope Valley Limestone of Nevada and California. J. Paleontol., 47: 861882.Google Scholar
Sprinkle, J. 1975. The “arms” of Caryocrinites, a rhombiferan cystoid convergent on crinoids. J. Paleontol. 49: 10621073.Google Scholar
Sprinkle, J. 1976a. Classification and phylogeny of “Pelmatozoan” echinoderms. Syst. Zool. 25: 8391.Google Scholar
Sprinkle, J. 1976b. Biostratigraphy and paleoecology of Cambrian echinoderms from the Rocky Mountains. Brigham Young Univ. Geol. Studies 23: 6173.Google Scholar
Sprinkle, J. 1979. Convergence of Paleozoic stemmed echinoderms with crested calyces. Geol. Soc. Amer. Abstr. Prog. 11(7): 522.Google Scholar
Sprinkle, J. 1980. Origin of blastoids: new look at an old problem. Geol. Soc. Amer. Abstr. Prog. 12(7): in press.Google Scholar
Sprinkle, J. and Bell, B. M. 1978. Paedomorphosis in edrioasteroid echinoderms. Paleobiology. 4: 8288.Google Scholar
Sprinkle, J. and Gutschick, R. C. 1967. Costatoblastus, a channel fill blastoid from the Sappington Formation of Montana. J. Paleontol. 41: 385402.Google Scholar
Sprinkle, J. and Longman, M. W. 1977. Echinoderm faunas and paleoecology of the Bromide Formation (Middle Ordovician) of Oklahoma. J. Paleontol. 51(2) suppl. pt. 3: 26.Google Scholar
Sprinkle, J. and Robison, R. A. 1978. Ctenocystoids. p. T998-T1002. In Moore, R. C. and Teichert, Curt (eds.), Treatise on Invertebrate Paleontology, pt. T 3: T998-T1002, Geol. Soc. Amer. and Univ. Kansas Press, Lawrence.Google Scholar
Stanley, S. M. 1979. Macroevolution, pattern and process, 332 p., W. H. Freeman Co., San Francisco, California.Google Scholar
Stearn, C. W. and Scoffin, T. P. 1977. Carbonate budget of a fringing reef, Barbados. In Proc. Third Int. Coral Reef Symp., p. 471476, Rosenstiel School Mar. Atmos. Sci., Univ. Miami. Google Scholar
Strathmann, R. R. 1975. Larval feeding in echinoderms. Am Zool. 15: 717730.Google Scholar
Strimple, H. L. 1970. Echinoderm zonules in the Devonian of Iowa. Proc. Iowa Acad. Sci. 77: 249256.Google Scholar
Strimple, H. L. 1975. Introduction to a new series of studies of Ordovician echinoderms. Proc. Iowa Acad. Sci. 82: 124125.Google Scholar
Strimple, H. L. 1977. Unusual morphological features in the blastoid genus Pentremites. Geol. Mag. 114: 913.Google Scholar
Stukalina, G. A. 1966. On the principles of classification of Paleozoic crinoid stems (0 printisipakh klassificatsii steblei drevnikh morskikh lilii). Paleont. Zhur. 3: 94102.Google Scholar
Stukalina, G. A. 1967. Stratigraphic significance of the stems of crinoids in solving the Siluro-Devonian boundary problem. In Oswald, D. H. (ed.), International Symposium on the Devonian System, 2: 893896, Alberta Soc. Petrol. Geol. Google Scholar
Stukalina, G. A. 1970. Stratigraphical significance of crinoids and questions on the Silurian and Devonian boundary, in Zania, I. E., and Chernysheva, N. E., (ed.), Biostratigraphical and paleobiofacial investigations and their practical significance (Stratigraficheskoe znachenie krinoidey v voprosy granitsy Silura i Devona V kh Biostratigraficheskie i paleviofatsialnie issledovaniya i ikh prakticheskow znachenie). Trudy 10th & 11th Session All-Union Paleontological Society Leningrad, 1964–65, p. 7377.Google Scholar
Stukalina, G. A. 1977. Crinoids. In Martinsson, A. (ed.), The Silurian-Devonian Boundary, IUGS ser. A (5): 333336.Google Scholar
Tappan, H. 1971. Microplankton, ecologic succession, and evolution. N. Am. Paleontol. Cov., 1969, Proc. pt. H: 10581103.Google Scholar
Termier, H. and Termier, G. 1969. Les Stromatocystitoïdes et leur descendance. Essai sur l'évolution des premiers echinoderms. Geobios 2: 131156.Google Scholar
Termier, H. and Termier, G. 1973. Les Echinodermes Cincta du Cambrien de la Montagne Noire (France). Geobios 6: 243265.Google Scholar
Thayer, C. W. 1979. Biological bulldozers and the evolution of marine benthic communities. Science 203(4379): 458461.Google Scholar
Thorson, G. 1957. Bottom communities. In Hedgepeth, J. W., (ed.), Treatise on Marine Ecology and Paleoecology, 1, Ecology. Geol. Soc. Amer. Mem. 67(1): 461534.Google Scholar
Toponce, D. 1973. Cabo Pulmo Reef. Oceans 6: 4245.Google Scholar
Toulmin, L. B. 1969. Paleocene and Eocene guide fossils of the eastern Gulf Coast region. Gulf Coast Assoc. Geol. Soc. 19: 455487.Google Scholar
Turpeava, E. P. 1957. Interrelationships of dominant species in marine benthic biocoenoses, p. 137148 In Nikitkin, (ed.), Trasa. Inst. Oceanol., Mar. Biol. USSR Acad. Sci. Press 20 (Pub. in U.S. by Am. Inst. Biol. Sci. Wash., D. C.).Google Scholar
Ubaghs, G. 1953. Classe des stelleroides. In Piveteau, J. (ed.), Traite de Paleontologie 3: 774842, Paris.Google Scholar
Ubaghs, G. 1961. Sur la nature de l'organe appele tige ou pedoncule chez less Carpoides Cornuta et Mitrata. C. R. Acad. Sci. 253: 27382740.Google Scholar
Ubaghs, G. 1966. Ophiocistioids. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, pt. U 1: 174188. Geol. Soc. Amer. and Univ. Kans., Lawrence.Google Scholar
Ubaghs, G. 1967. Le genre Ceratocystis Jaekal (Echinodermata, Stylophora). Univ. Kans. Paleontol. Contrib. 22: 116.Google Scholar
Ubaghs, G. 1968a. General characteristics of Echinodermata. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, pt. S 1: S3-S60. Geol. Soc. Amer. and Univ. Kans., Lawrence.Google Scholar
Ubaghs, G. 1968b. Eocrinoidea. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, pt. S 2: S455–495.Google Scholar
Ubaghs, G. 1968c. Stylophora. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, pt. S 2: S495-S565, Geol. Soc. Amer. and Univ. Kans., Lawrence.Google Scholar
Ubaghs, G. 1968d. Homostelea. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, pt. S 2: S565-S581, Geol. Soc. Amer. and Univ. Kans., Lawrence.Google Scholar
Ubaghs, G. 1970. Les echinoderms capoides de l'Ordovicien Inferieur de la Montagne Noire (France). Cahiers de Paleont., Paris, 112 p.Google Scholar
Ubaghs, G. 1971. Diversite et specialisation des plus anciennes echinoderms que l'on connaisse. Geol. Rev. 46: 157200.Google Scholar
Ubaghs, G. 1975a. Early Paleozoic Echinoderms. Rev. Earth and Planetary Sci. 3: 7998.Google Scholar
Ubaghs, G. 1975b. Trois Mitrata (Echinodermata: Stylophora) nouveaux de l'Ordovicien de Tchecoslovaquie. Paläont. Z. 53: 98119.Google Scholar
Ubaghs, G. 1978. Origin of crinoids. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, pt. T: T275-T281, Geol. Soc. Amer. and Univ. Kans., Lawrence.Google Scholar
Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology 12: 684709.Google Scholar
Valentine, J. W. 1973. Evolutionary Paleoecology of the Marine Biosphere. Prentice-Hall, Inc., Englewood Cliffs, N. J., 511 p.Google Scholar
Van Sant, J. F. and Lane, N. G. 1964. Crawfordsville (Indiana) crinoid studies. Univ. Kans. Paleont. Contr., Echinodermata, Art. 7: 1136.Google Scholar
Vanuxem, L. 1842. Survey of the Third Geological District. Nat. Hist. New York, pt. IV, Geology 3: 307 p.Google Scholar
Vevers, H. G. 1952. A photographic survey of certain areas of sea floor near Plymouth. Jour. Mar. Biol. Assoc. U. K. 31: 215222.Google Scholar
Vine, P. J. 1972. Recent research on the crown-of-thorns starfish. Underwater Jour. Inf. Bull. 4: 6473.Google Scholar
Vine, P. J. 1973. Crown of thorns (Acanthaster planci) plagues: the natural causes theory. Atoll Res. Bull. 166: 10 p.Google Scholar
Wagner, C. D. 1974. Fossil and recent sand dollar echinoids of Alaska. J. Paleontol. 48: 105123.Google Scholar
Walcott, C. D. 1911. Cambrian geology and paleontology, II, No. 3. Middle Cambrian holothurians and medusae. Smithsonian Misc. Coll. 85(3): 146.Google Scholar
Warner, G. F. 1977. On the shapes of passive suspension feeders. In Keegan, B. F., Ceidigh, P. O. and Boaden, P. J. S. (eds.), Biology of Benthic Organisms, p. 567576. Pergamon Press, N. Y. Google Scholar
Warner, G. F. 1979. Aggregation in echinoderms. In Larwood, G. and Rosen, B. R. (eds.), Biology and Systematics of Colonial Organisms. Systematics Assoc. Spec. Vol. no. 11: 375396. Academic Press, New York.Google Scholar
Warner, G. F. and Woodley, J. D. 1975. Suspension feeding in the brittle-star Ophiothrix fragilis. J. mar. biol. Ass. U. K. 55: 199210.Google Scholar
Waters, J. A., Horowitz, A. S. and Macurda, D. B. Jr. 1979. Ontogeny and phylogeny of the Carboniferous blastoid Pentremites. Geol. Soc. Amer. Abstr. Prog. 11(7): 535.Google Scholar
Weber, J. N. and Woodhead, P. M. J. 1970. Ecological studies of the coral predator Acanthaster planci in the South Pacific. Mar. Biol. 6: 1217.Google Scholar
Webster, G. D. 1973. Bibliography and index of Paleozoic crinoids, 1942–1968 Geol. Soc. Amer. Mem. 137: 1341.Google Scholar
Webster, G. D. 1974. Crinoid pluricolumnal noditaxis patterns. J. Paleontol. 48: 12831288.Google Scholar
Webster, G. D. 1977. Bibliography and index of Paleozoic crinoids, 1969–1973. Geol. Soc. Amer. Microform Publ. 8: 1235.Google Scholar
Welch, J. R. 1978. Flume study of simulated feeding and hydrodynamics of a Paleozoic stalked crinoid. Paleobiology 4: 8995.Google Scholar
Whiteaves, J. F. 1897. Description of a new genus and species of cystidean from the Treanton Limestone at Ottawa. Can. Rec. Sci. 7: 287292.Google Scholar
Whitehouse, F. W. 1941. The Cambrian faunas of north-eastern Australia. Part 4: Early Cambrian echinoderms similar to the larval stages of Recent forms. Mem. Queensland Mus., 12(1): 128.Google Scholar
Willink, R. J. 1980. A new coiled-stemmed camerate crinoid from the Permian of eastern Australia. J. Paleontol. 54: 1534.Google Scholar
Witzke, B. J., Frest, T. J. and Strimple, H. L. 1979. Biogeography of the Silurian-Lower Devonian echinoderms. In Gray, J. and Boucot, A. J. (eds.), Historical Biogeography, Plate Tectonics, and the Changing Environment. p. 117129, Oregon St. Univ. Press.Google Scholar
Yamaguchi, M. 1975. Coral reef asteroids of Guam. Biotropica 7: 1223.Google Scholar
Yeltyschewa, R. A. and Stukalina, G. A. 1963. Stems of the Ordovician and Lower Silurian Crinoidea of the Central Taymyr, Nova Zemlya and Vaigach (Stebli ordovikskikh i nizhnesiluriskikh krinoidei Tsentralnogo Taimyra, Novoi Zemli i Vaigacha). Uchenya zapiski Sci. Invest. Inst. Geol. Arctic Paleont. i Biostrati., Izdatel 'stvo vyp. 2: 2362.Google Scholar