Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-10T19:47:32.006Z Has data issue: false hasContentIssue false

Ichnotaxonomy: A Burrow by Any Other Name…?

Published online by Cambridge University Press:  17 July 2017

James P. A. Magwood*
Affiliation:
Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112

Extract

Ichnotaxonomy is a formal, hierarchical classification system for trace fossils (=ichnofossils, the fossilized results of behavior). It includes a binomial nomenclature similar to the zoological taxonomic hierarchy applied to organisms. A common observation from non-ichnologists is that a formal system of classification and nomenclature for footprints, burrows, and other holes in the ground seems a bit excessive. Surely a burrow by any other name is still a burrow? However, ichnology has a real need of formal classification and names. There is a great diversity of both trace fossils and of processes that affect their form. Understanding and making use of this diversity requires an effective and generally agreed upon means of classification and nomenclature. To show that this is the case, one must understand both the principles of classification and how they are applied to trace fossils.

Type
Research Article
Copyright
Copyright © 1992 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpert, S. P. 1976. Trilobite and star-like trace fossils from the White-Inyo Mountains, California. Journal of Paleontology, 50:226239.Google Scholar
Alpert, S. P., and Moore, J. M. 1975. Lower Cambrian trace fossil evidence for predation on trilobites. Lethaia, 8:223230.CrossRefGoogle Scholar
Baldwin, C. T. 1977. Internal structure of trilobite trace fossils indicative of an open surface furrow origin. Palaeogeography, Palaeoclimatology, Palaeoecology, 21:273284.CrossRefGoogle Scholar
Bergström, J. 1973. Organization, Life, and Systematics of Trilobites. Fossils and Strata, 2:3866.Google Scholar
Bradshaw, M. A. 1981. Paleoenvironmental interpretations and systematics of Devonian trace fossils from the Taylor Group (lower Beacon Supergroup), Antarctica. New Zealand Journal of Geology and Geophysics, 24:615652.Google Scholar
Bromley, R. G. 1990. Trace Fossils, Biology and Taphonomy. Unwin Hyman, London, 280 p.Google Scholar
Bromley, R. G., and Asgaard, U. 1979. Triassic freshwater ichnocoenoces from Carlsberg fjord, East Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology, 28:3980.Google Scholar
Bromley, R. G., and Frey, R. W. 1974. Redescription of the trace fossil Gyrolithes and taxonomic evaluation of Thalassinoides, Ophiomorpha and Spongeliomorpha . Bulletin of the Geological Society of Denmark, 23:311335.Google Scholar
Bromley, R. G., Pemberton, S. G., and Rahmani, R. A. 1984. A Cretaceous wood ground: the Teredolites ichnofacies. Journal of Paleontology, 58:488498.Google Scholar
Crimes, T. P. 1968. Cruziana: a stratigraphically useful trace fossil. Geological Magazine, 105:360364.Google Scholar
Crimes, T. P. 1969. Trace fossils from the Cambro-Ordovician of north Wales and their stratigraphic significance. Geological Journal, 6:333338.CrossRefGoogle Scholar
Crimes, T. P. 1970. Trilobite tracks and other trace fossils from the upper Cambrian of North Wales. Geological Journal, 7:4768.Google Scholar
Crimes, T. P. 1975. The production and preservation of trilobite resting and furrowing traces. Lethaia, 8:3548.Google Scholar
Crimes, T. P., Legg, I., Marcos, A., and Arboleya, M. 1977. ?Late Precambrian-low lower Cambrian trace fossils from Spain, In Crimes, T.P. and Harper, J.C., eds., Trace Fossils II. Geological Journal special issue, 9:91138, Seel House Press.Google Scholar
Culver, S.J., Buzas, M. A., and Collins, L. S. 1987. On the value of taxonomic standardization in evolutionary studies. Paleobiology, 13:169176.CrossRefGoogle Scholar
D'Alessandro, A. and Bromley, R. G. 1987. Meniscate trace fossils and the Muensteria-Taenidium problem. Palaeontology, 30:743763.Google Scholar
Ekdale, A. A., Bromley, R. G., and Pemberton, S. G. 1984. Ichnology, trace fossils in sedimentology and stratigraphy. SEPM short course 15, 317 p.Google Scholar
Ekdale, A. A., and Lewis, D. H. 1991. The New Zealand Zoophycos revisited: morphology, ethology, and paleoecology. Ichnos, 1:183194.Google Scholar
Fillion, D. and Pickerill, R. K. 1984. Systematic ichnology of the middle Ordovician Trenton Group, St. Lawrence Lowland, eastern Canada. Maritime Sediments and Atlantic Geology, 20:141.Google Scholar
Frey, R. W., and Howard, J. D. 1981. Conichnus and Schaubcylindrichnus: redefined trace fossils from the Upper Cretaceous of the Western Interior. Journal of Paleontology, 800804.Google Scholar
Frey, R. W., Howard, J. D., and Pryor, W. A. 1978. Ophiomorpha: its morphologic, taxonomic, and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 23:199229.CrossRefGoogle Scholar
Frey, R. W., and Pemberton, S. G. 1991. The ichnogenus Schaubcylindrichnus: morphological, temporal, and environmental significance. Geological Magazine, 128:595602.Google Scholar
Frey, R. W., and Seilacher, A. 1980. Uniformity in marine invertebrate ichnology. Lethaia, 13:183207.CrossRefGoogle Scholar
Fürsich, F. T. 1973. A revision of the trace fossils Spongeliomorpha, Ophiomorpha, and Thalassinoides . Neues Jahrbuch fur Geologie Palaontologie Monatschefte, 12:719735.Google Scholar
Fürsich, F. T. 1974a. On Diplocraterion Torell 1870 and the significance of morphological features in vertical spreiten-bearing, U-shaped trace fossils. Journal of Paleontology, 48:952962.Google Scholar
Fürsich, F. T. 1974b. Ichnogenus Rhizocorallium . Paläontologische Zeitschrift, 48:1628.Google Scholar
Goldring, R. 1985. The formation of the trace fossil Cruziana . Geological Magazine, 122:6572.CrossRefGoogle Scholar
Goodwin, P. W. and Anderson, E. J. 1974. Associated physical and biogenic structures in environmental subdivision of a Cambrian tidal sand body. Journal of Geology, 82:779794.Google Scholar
Gould, J. L. 1982. Ethology, The Mechanisms and Evolution of Behavior. Norton, New York, 605 pp.Google Scholar
Gureyev, Y. A. 1985. The nature of the taxon in Paleoichnology. Paleontological Journal, 19:118120.Google Scholar
Häntzschel, W. 1975. Trace Fossils and Problematica, In Teichert, C., ed., Treatise on Invertebrate Paleontology, Part W, Miscellanea, Supplement 1, Geological Society of America and University of Kansas Press, Lawrence, Kansas, p. 1269.Google Scholar
Hester, N. C., and Pryor, W. A. 1972. Blade-shaped crustacean burrows of Eocene age: a composite form of Ophiomorpha . Bulletin of the Geological Society of America, 83:677688.CrossRefGoogle Scholar
Kern, J.P., Grimmer, J. C., and Lister, K. H. 1974. A new fossil spionid tube, Pliocene and Pleistocene of California and Baja California. Journal of Paleontology, 48:978982.Google Scholar
Magwood, J. P. A., and Pemberton, S. G. 1990. Stratigraphic significance of Cruziana: new data concerning the Cambrian-Ordovician ichnostratigraphic paradigm. Geology, 18:729732.Google Scholar
Martinsson, A. 1970. Toponomy of trace fossils, In Crimes, T.P. and Harper, J.C., eds., Trace Fossils. Geological Journal special issue, 3:323330, Seel House Press.Google Scholar
Melville, R. V. 1979. Further proposed amendments to the International Code of Zoological Nomenclature Z.N.(G.) 182. Bulletin of Zoological Nomenclature, 36:1114.CrossRefGoogle Scholar
Osgood, R. G. 1970. Trace fossils of the Cincinnati area. Palaeontographica Americana, 6:281–144.Google Scholar
Pemberton, S. G., and Frey, R. W. 1982. Trace fossil nomenclature and the Planolites-Palaeophycus dilemma. Journal of Paleontology, 56:843881.Google Scholar
Pemberton, S. G., and Bromley, R. G. 1988. The taxonomy of Conostichus and other plug-shaped ichnofossils. Canadian Journal of Earth Sciences, 25:886892.CrossRefGoogle Scholar
Pielou, E. C. 1984. The Interpretation of Ecological Data, A Primer on Classification and Ordination. John Wiley & Sons, 263 p.Google Scholar
Pollard, J. E. 1985. Isopodichnus, related arthropod trace fossils and notostracans from Triassic fluvial sediments. Transactions of the Royal Society of Edinburgh, Earth Sciences, 76:273285.Google Scholar
Rindsberg, A. K. 1990. Ichnological consequences of the 1985 International Code of Zoological Nomenclature. Ichnos, 1:5963.CrossRefGoogle Scholar
Seilacher, A. 1962. Form und funktion des trilobiten-daktylus. Paläontologische Zeitschrift, 36:218227.Google Scholar
Seilacher, A. 1967. Fossil Behavior. Scientific American, 217:7280.Google Scholar
Seilacher, A. 1970. Cruziana stratigraphy of “non fossiliferous” Paleozoic sandstones, In Crimes, T.P. and Harper, J.C., eds., Trace Fossils, Geological Journal special issue, 3:447476, Seel House Press.Google Scholar
Seilacher, A. 1977. Pattern analysis of Palaeodictyon and related trace fossils, In Crimes, T.P. and Harper, J.C., eds., Trace Fossils II. Geological Journal special issue, 9:289334, Seel House Press.Google Scholar
Seilacher, A. 1985. Trilobite palaeoecology and substrate relationships. Transactions of the Royal Society of Edinburgh, 76:231237.Google Scholar
Simpson, S. 1975. Trace fossil classification, p. 3954. In Frey, R.W., ed., The Study of Trace Fossils. Springer-Verlag, New York.CrossRefGoogle Scholar
Smith, A. B., and Crimes, T. P. 1983. Trace fossils formed by heart urchins-a study of Scolicia and related traces. Lethaia, 16:7992.Google Scholar
Smith, C. G. 1985. Ancestral Voices, language and the evolution of human consciousness, Prentice Hall, 178 p.Google Scholar
Trewin, N. J. 1976. Isopodichnus in a trace fossil assemblage from the Old Red Sandstone. Lethaia, 9:2937.CrossRefGoogle Scholar