Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-21T07:27:11.416Z Has data issue: false hasContentIssue false

Temporal Patterns in the Arthropod Trace-Fossil Record

Published online by Cambridge University Press:  17 July 2017

Joanne Kluessendorf
Affiliation:
Department of Geology, University of Illinois, 1301 W. Green Street, Urbana, Illinois 61801, U.S.A.
Donald G. Mikulic
Affiliation:
Illinois State Geological Survey, 615 E. Peabody Drive, Champaign, Illinois 61820, U.S.A.

Extract

Arthropods are currently abundant and diverse in many environments, with terrestrial insects alone accounting for at least 70% of all extant animal species (Barnes, 1980). The fossilization potential of arthropods, however, is low. With the exception of trilobites, ostracods, and decapods, most arthropod exoskeletons are weakly mineralized and contain abundant organic material. Multielement construction and ecdysis (shedding of exoskeleton during life) introduces the problem of disarticulation and transportation. Therefore, preservation of most arthropods as body fossils requires exceptional circumstances such as rapid burial or anoxic conditions.

Type
Research Article
Copyright
Copyright © 1990 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almond, J.E. 1985. The Silurian-Devonian fossil record of the Myriapoda. Philosophical Transactions of the Royal Society of London, 309B:227237.Google Scholar
Alpert, S.P. 1977. Trace fossils and the basal Cambrian boundary, p. 18. In Crimes, T.P. and Harper, J.C. (eds), Trace Fossils 2. Seel House Press, Liverpool.Google Scholar
Von Amerom, H. W. J. 1966. Phagophytichnus ekowskii, nov. ichnogen. und ichnosp., eine missbildung infolge von insectenfrass aus dem spanischen Stephanien (Provinz Leon). Leidse Geologisches Mededelingen, 38:181184.Google Scholar
Anderson, A.M. 1981. The Umfolozia arthropod trackways in the Permian Dwyka and Ecca Series of South Africa. Journal of Paleontology, 55:84108.Google Scholar
Archer, A.W., and Maples, C.G. 1984. Trace-fossil distribution across a marine-to-nonmarine gradient in the Pennsylvanian of southwestern Indiana. Journal of Paleontology, 58:448466.Google Scholar
Ausich, W.I., and Bottjer, D.J. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Paleozoic. Science, 216:173174.CrossRefGoogle Scholar
Bambach, R. 1983. Ecospace utilization and guilds in marine communities throughout the Phanerozoic, p. 719746. In Tevesz, M.J.S. and McCall, P.L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press, New York.CrossRefGoogle Scholar
Barnes, R.D. 1980. Invertebrate Zoology, 4th edition. Saunders College, Philadelphia, 1089 p.Google Scholar
Basan, P.B., and Frey, R.W. 1977. Actual-palaeontology and neoichnology of salt marshes near Sapelo Island, Georgia, p. 4170. In Crimes, T.P. and Harper, J.C. (eds.), Trace Fossils 2. Seel House Press, Liverpool.CrossRefGoogle Scholar
Bergström, J. 1973. Organization, life and systematics of trilobites. Fossils and Strata, 2:169.CrossRefGoogle Scholar
Birkenmajer, K., and Bruton, D.L. 1971. Some trilobite resting and crawling traces. Lethaia, 4:303309.CrossRefGoogle Scholar
Bishop, G.A. 1975. Traces of predation, p. 261281. In Frey, R.W. (ed.), The Study of Trace Fossils. Springer-Verlag, New York.CrossRefGoogle Scholar
Bishop, G.A. 1985. Taphonomy of North American decapods. Journal of Crustacean Biology, 6:326355.CrossRefGoogle Scholar
Braithwaite, C.J.R., and Talbot, M.R. 1972. Crustacean burrows in the Seychelles, Indian Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 11:265285.CrossRefGoogle Scholar
Briggs, D.E.G., Dalingwater, J.E., and Selden, P.A. in press. Biomechanics of locomotion in fossil arthropods. In Rayner, J.M.V. (ed.), Biomechanics in Evolution. Cambridge University Press.Google Scholar
Briggs, D.E.G., Fortey, R.A., and Clarkson, E.N.K. 1988. Extinction and the fossil record of the arthropods, p. 171209. In Larwood, G.P. (ed.), Extinction and Survival in the Fossil Record. Clarendon Press, Oxford, Systematics Association Special Volume, 34.Google Scholar
Briggs, D.E.G., Plint, A. G., and Pickerill, R.K. 1984. Arthropleura trails from the Westphalian of eastern Canada. Palaeontology, 27:843855.Google Scholar
Briggs, D.E.G., Plint, A. G., and Rolfe, W.D.I. 1983. A giant arthropod trackway from the lower Mississippian of Pennsylvania. Journal of Paleontology, 57: 377390.Google Scholar
Briggs, D.E.G., Plint, A. G., and Brannon, J. 1979. A giant myriapod trail from the Namurian of Arran, Scotland. Palaeontology, 22:273291.Google Scholar
Briggs, D.E.G., and Rushton, A.W.A. 1980. A trace fossil from the upper Cambrian Festiniog bed of North Wales and its bearing on trilobite locomotion. Geologica et Palaontologica, 14:18.Google Scholar
Briggs, D.E.G., and Whittington, H.B. 1985. Modes of life of arthropods from the Burgess Shale, British Columbia. Transactions of the Royal Society of Edinburgh (Earth Science), 76:149160.Google Scholar
Bromely, R.G., and Asgaard, U. 1979. Triassic freshwater ichnocoenoses from Carlsberg Fjord, East Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology, 28:3980.CrossRefGoogle Scholar
Buschbaum, R., Buschbaum, M., Pearse, J., and Pearse, V. 1987. Animals without backbones, 3rd edition. University of Chicago Press, Chicago, 572 p.Google Scholar
Carbonel, P., Colin, J.-P., Danielpol, D.L., Löffler, H., and Neustrueva, I. 1988. Paleoecology of limnic ostracodes: a review of some major topics. Palaeogeography, Palaeoclimatology, Palaeoecology, 62:413461.CrossRefGoogle Scholar
Carpenter, F.M., and Burnham, L. 1985. The geological record of insects. Annual Review of Earth and Planetary Sciences, 13:297314.CrossRefGoogle Scholar
Caster, K.E. 1938. A restudy of the tracks of Paramphibius . Journal of Paleontology, 12:360.Google Scholar
Chakrabarti, A. 1981. Burrow patterns of Ocypode ceratophthalma (Pallas) and their environmental significance. Journal of Paleontology, 55:431441.Google Scholar
Chamberlain, C.K. 1975. Recent Lebensspuren in nonmarine environments, p. 431457. In Frey, R.W. (ed.), The Study of Trace Fossils. Springer-Verlag, New York.CrossRefGoogle Scholar
Clark, G.R. Ii, and Ratcliffe, B.C. 1989. Observations on the tunnel morphology of Heterocerus brunneus Melsheimer (Coleoptera: Heteroceridae) and its paleoecologic significance. Journal of Paleontology, 63:228232.CrossRefGoogle Scholar
Crimes, T.P. 1970. The significance of trace fossils in sedimentology, stratigraphy, and palaeoecology with examples from Lower Palaeozoic strata, p. 101126. In Crimes, T.P. and Harper, J.C. (eds.), Trace Fossils. Seel House Press, Liverpool.Google Scholar
Crimes, T.P., and Anderson, M.M. 1985. Trace fossils from Late Precambrian-Early Cambrian strata of southeastern Newfoundland (Canada): Temporal and environmental implications. Journal of Paleontology, 59:310343.Google Scholar
Crimes, T.P., Leggs, I., Marcos, A., and Arbalaya, M. 1977. ?Late Precambrian-low lower Cambrian trace fossils from Spain, p. 91138. In Crimes, T.P. and Harper, J.C. (eds.), Trace Fossils 2. Seel House Press, Liverpool.Google Scholar
Doyle, J.A., and Hickey, L.J. 1976. Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution, p. 139206. In Beck, C.B. (ed.), Origin and Early Evolution of Angiosperms. Columbia University Press, New York.Google Scholar
Edgar, R.M.C., Baines, J.G., Collinson, J.D., Hardy, P.G., Okolo, S.A., and Pollard, J.E. 1985. Trace fossil assemblages and their occurrence in Silesian (Middle Carboniferous) deltaic sediments of the central Pennine basin, England. Society of Economic Paleontologists and Mineralogists Special Publication, 35:99149.Google Scholar
Ekdale, A.A., and Bromley, R.G. 1984. Comparative ichnology of shelf-sea and deep-sea chalk. Journal of Paleontology, 58:322332.Google Scholar
Ekdale, A.A., Bromley, R.G., and Pemberton, S.G. 1984. Ichnology, Trace Fossils in Sedimentology and Stratigraphy. SEPM Short Course 15. Society of Economic Paleontologists and Mineralogists, Tulsa, 317 p.Google Scholar
Ekdale, A.A., Bromley, R.G., and Pickard, M. Dane 1985. Trace fossils in a Jurassic eolianite, Entrada Sandstone, Utah, U.S.A. Society of Economic Paleontologists and Mineralogists Special Publication, 35:320.Google Scholar
Fedonkin, M.A. 1977. Precambrian-Cambrian ichnocoenoses of the European platform, p. 183194. In Crimes, T.P. and Harper, J.C. (eds.), Trace fossils 2. Seel House Press, Liverpool.Google Scholar
Fedonkin, M.A. 1985. Precambrian metazoans: The problem of preservation, systematics, and evolution. Philosophical Transactions of the Royal Society of London, 311B:2745.Google Scholar
Förster, R. 1985. Evolutionary trends and ecology of Mesozoic decapod crustaceans. Transactions of the Royal Society of Edinburgh (Earth Science), 76:299304.Google Scholar
Frey, R.W., Curran, H.A., and Pemberton, S.G. 1984. Tracemaking activities of crabs and their environmental significance. Journal of Paleontology, 58:333350.Google Scholar
Frey, R.W., Pemberton, S.G., and Fagerstrom, J.A. 1984. Morphological, ethological, and environmental significance of the ichnogenera Scoyenia and Ancorichnus . Journal of Paleontology, 58:511528.Google Scholar
Frey, R.W., Pemberton, S.G., and Seilacher, A. 1980. Uniformity in marine ichnology. Lethaia, 13:183207.CrossRefGoogle Scholar
Geyer, G., and Kelber, K.-P. 1987. Flügelreste und Lebensspuren von Insekten aus dem Unteren Keuper Mainfrankens. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 174:331355.Google Scholar
Hanken, N.-M., and Størmer, L. 1975. The trail of a large Silurian eurypterid. Fossils and Strata, 4:255270.CrossRefGoogle Scholar
Hannibal, J.T., and Feldmann, R.M. 1983. Arthropod body fossil, interpreted as echinocarid escape burrows, from the Chagrin Shale (Late Devonian) of Ohio. Journal of Paleontology, 57:705710.Google Scholar
Häntzschel, W. 1975. Miscellanea, Part W, Supplement I, Trace fossils and Problematica. Treatise on Invertebrate Paleontology. Geological Society of America and The University of Kansas Press, Lawrence, 269 p.Google Scholar
Hurst, J.M., and Watkins, R. 1981. Lower Paleozoic clastic, level-bottom community organization and evolution based on Caradoc and Ludlow comparisons, p. 69100. In Gray, J., Boucot, A.J. and Berry, W.B.N. (eds.), Communities of the Past. Hutchinson Ross Publishing Company, Strousburg, Pennsylvania.Google Scholar
Jensen, S. 1990. Predation by early Cambrian trilobites on infaunal worms – evidence from the Swedish Mickwitzia Sandstone. Lethaia, 23:2942.CrossRefGoogle Scholar
Kennedy, W.J. 1975. Trace fossils in carbonate rocks, p. 337398. In Frey, R.W. (ed.), The Study of Trace Fossils. Springer-Verlag New York.Google Scholar
Kopaska-Merkel, E.C. 1988. Trace-fossil frequency modes and arthropod growth. Northeastern Geology, 10:300306.Google Scholar
Labandeira, C.C. 1990. Use of a phenetic analysis of Recent hexapod mouthparts for the distribution of hexapod food resource guilds in the fossil record. Unpublished Ph.D. dissertation, University of Chicago, 1203 p.Google Scholar
Labandeira, C.C., Beall, B.S., and Hueber, F.M. 1988. Early insect diversification: evidence from a Lower Devonian bristletail from Quebec. Science 242:913916.CrossRefGoogle Scholar
Levinton, J.L., and Bambach, R.K. 1975. A comparative study of Silurian and Recent deposit-feeding bivalve communities. Paleobiology 1:97124.CrossRefGoogle Scholar
Manton, S.M. 1977. The Arthropoda. Clarendon Press, Oxford, 527 p.Google Scholar
Merrill, R.D. 1984. Ophiomorpha and other nonmarine trace fossils from the Eocene Ione Formation, California. Journal of Paleontology 58:542549.Google Scholar
Mikulic, D.G., Briggs, D.E.G., and Kluessendorf, J. 1985a. A Silurian soft-bodied biota. Science, 228:715717.CrossRefGoogle ScholarPubMed
Mikulic, D.G., Briggs, D.E.G., and Kluessendorf, J. 1985b. A new exceptionally preserved biota from the lower Silurian of Wisconsin, U.S.A. Philosophical Transactions of the Royal Society of London, 311B:7585.Google Scholar
Miller, M.F. 1982. Limulicubichnus: a new ichnogenus of limulid resting trace. Journal of Paleontology, 56:429433.Google Scholar
Miller, M.F. 1984. Distribution of biogenic structures in Paleozoic nonmarine and marine-margin sequences: an actualistic model. Journal of Paleontology, 58:550571.Google Scholar
Niklas, K.J. 1986. Large-scale changes in animal and plant terrestrial communities, p. 383406. In Raup, D.M. and Jablonski, D. (eds.), Patterns and Processes in the History of Life. Dahlem Konferenzen, Life Sciences Research Report 36. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Osgood, R.G. 1970. Trace fossils of the Cincinnati area. Palaeontographica Americana, 6(41):281444.Google Scholar
Pemberton, S.G., Risk, M.J., and Buckley, D.E. 1976. Supershrimp: Deep bioturbation in the Strait of Canso, Nova Scotia. Science, 192:790791.CrossRefGoogle ScholarPubMed
Plotnick, R.E. 1986. Taphonomy of modern shrimp: implications for the arthropod fossil record. Palaios, 1:286293.CrossRefGoogle Scholar
Plotnick, R.E., Baumiller, T., and Wetmore, K. 1988. Fossilization potential of the mud crab, Panopeus (Brachyura: Xanthidae) and temporal variability in crustacean taphonomy. Palaeogeography, Palaeoclimatology, Palaeoecology 63:2743.CrossRefGoogle Scholar
Plumstead, E.P. 1963. The influence of plants and environments on the developing animal life of Karoo times. South African Journal of Science, 59:147152.Google Scholar
Pollard, J.E. 1985. Isopodichnus, related arthropod trace fossils and notostracans from Triassic fluvial sediments. Transactions of the Royal Society of Edinburgh (Earth Science), 76:273286.Google Scholar
Radwanski, A. 1977. Present-day types of traces in the Neogene sequence: their problems of nomenclature and preservation, p. 227264. In Crimes, T.P. and Harper, J.C. (eds.), Trace Fossils 2. Seel House Press, Liverpool.Google Scholar
Ratcliffe, B.C., and Fagerstrom, J.A. 1980. Invertebrate Lebensspuren of Holocene floodplains: Their morphology, origin and paleoecological significance. Journal of Paleontology, 54:614630.Google Scholar
Retallack, G.J. 1984. Trace fossils of burrowing beetles and bees in an Oligocene paleosol, Badlands National Park, South Dakota. Journal of Paleontology, 58:571592.Google Scholar
Retallack, G.J., and Feakes, C.R. 1987. Trace fossil evidence for Late Ordovician on land. Science, 235:6163.CrossRefGoogle ScholarPubMed
Rodriguez, J., and Gutschick, R.C. 1970. Late Devonian-Early Mississippian ichnofossils from western Montana and northern Utah, p. 407438. In Crimes, T.P. and Harper, J.C. (eds.), Trace Fossils. Seel House Press, Liverpool.Google Scholar
Rohr, D.M., Boucot, A.J., Miller, J., and Abbott, M.L. 1986. Oldest evidence of wood damage by termites from the Upper Cretaceous of Big Bend National Park, Texas, p. 139140. In Pausé, P.H. (ed.), Geology of the Big Bend area and Solitario Dome, Texas. West Texas Geological Society Publication 85-82.Google Scholar
Rolfe, W.D.I., and Ingham, J.K. 1967. Limb structure, affinity, and diet of the Carboniferous ‘centipede’ Arthropleura . Scottish Journal of Geology, 3:118124.CrossRefGoogle Scholar
Rozefelds, A.C., and Sobbe, I. 1987. Problematic insect leaf mines from the upper Triassic Ipswich Coal Measures of southeastern Queensland, Australia. Alcheringa, 11:5157.CrossRefGoogle Scholar
Schäfer, W. 1972. Ecology and Palaeoecology of Marine Environments. University of Chicago Press, Chicago, 568 p.Google Scholar
Schmalfuss, H. 1981. Structure, patterns, and function of cuticular terraces in trilobites. Lethaia, 14:331341.CrossRefGoogle Scholar
Scott, A.C. 1977. Coprolites containing plant material from the Carboniferous of Britain. Palaeontology, 20:5968.Google Scholar
Scott, A.C., and Taylor, T.N. 1983. Plant/animal interactions during the Upper Carboniferous. Botanical Review, 49:259307.CrossRefGoogle Scholar
Seilacher, A. 1962. Form und Funktion des Trilobiten-Daktylus. Paläontologisches Zeitschrift, Hermann Schmidt Festband: 218227.Google Scholar
Seilacher, A. 1969. Paleoecology of boring barnacles. American Zoologist, 9:705719.CrossRefGoogle Scholar
Seilacher, A. 1970. Cruziana stratigraphy of “non-fossiliferous” Palaeozoic sandstones, p. 447476. In Crimes, T.P. and Harper, J.C. (eds.), Trace Fossils. Seel House Press, Liverpool.Google Scholar
Seilacher, A. 1973. Fabricational noise in adaptive morphology. Systematic Zoology, 22: 451465.CrossRefGoogle Scholar
Seilacher, A. 1985. Trilobite palaeobiology and substrate relationships. Transactions of the Royal Society of Edinburgh (Earth Science), 76:231237.Google Scholar
Seilacher, A. 1986. Evolution of behavior as expressed in marine trace fossils, p. 6287. In Nitecki, M.H., and Kitchell, J.A. (eds.), Evolution of Animal Behavior. Oxford University Press, New York.Google Scholar
Seldon, P.A. 1985. Autecology of Silurian eurypterids. Palaeontological Association, Special Papers in Palaeontology, 32:3954.Google Scholar
Sepkoski, J.J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7:3653.CrossRefGoogle Scholar
Sepkoski, J.J. Jr., and Hulver, M.L. 1985. An atlas of Phanerozoic clade diversity diagrams, p. 1130. In Valentine, J.W. (ed.), Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press.Google Scholar
Simpson, S. 1975. Classification of trace fossils, p. 3954. In Frey, R.W. (ed.), The Study of Trace Fossils. Springer-Verlag, New York.CrossRefGoogle Scholar
Sheehan, P.M., and Schiefelbein, R.J. 1984. The trace fossil Thalassinoides from the upper Ordovician of the eastern Great Basin: deep burrowing in the early Paleozoic. Journal of Paleontology, 58:440447.Google Scholar
Stanley, S.M. 1975. Adaptive themes in the evolution of the Bivalvia (Mollusca). Annual Reviews of Earth and Planetary Sciences, 3:361385.CrossRefGoogle Scholar
Stauffer, P.H. 1979. A fossilized honeybee comb from late Cenozoic cave deposits at Batu Caves, Malay Peninsula. Journal of Paleontology, 53:14161421.Google Scholar
Tevesz, M.J.S., and Mccall, P.L. 1982. Geological significance of aquatic nonmarine trace fossils, p. 257288. In McCall, P.L. and Tevesz, M.J.S. (eds.), Animal-sediment relations. Plenum Press, New York.CrossRefGoogle Scholar
Thayer, C.W. 1983. Sediment-mediated biological disturbance and the evolution of marine benthos, p. 480595. In Tevesz, M.J.S. and McCall, (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press, New York.Google Scholar
Thenius, E. 1988. Lebesspuren von aquatischen Insektenlarven aus dem Jungtertiär Niederösterreichs. Beiträge zur Paläontologie von Osterreich, 14:111.Google Scholar
Thomlinson, J.T. 1963. Acrothoracian barnacles in Paleozoic myalinids. Journal of Paleontology, 37:164166.Google Scholar
Vermeij, G.J. 1977. The Mesozoic marine revolution: Evidence from predation snails, predators and grazers. Paleobiology, 3:245258.CrossRefGoogle Scholar
Vermeij, G.J. 1983. Shell-breaking predation through time, p. 649669. In Tevesz, M.J.S. and McCall, P.L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press, New York.CrossRefGoogle Scholar
Vermeij, G.J. 1987. Evolution and Escalation: An Ecological History of Life. Princeton University Press, Princeton, 527 p.CrossRefGoogle Scholar
Walker, S.E. 1988. Taphonomic significance of hermit crabs (Anomura: Paguridae): epifaunal hermit crab-infaunal gastropod example. Paleoegeography, Palaeoclimatolgy, Palaeoecology, 63:4571.CrossRefGoogle Scholar
Warme, J.E. 1970. Traces and significance of marine rock borers, p. 515526. In Crimes, T.P. and Harper, J.C. (eds.), Trace Fossils. Seel House Press, Liverpool.Google Scholar
Warme, J.E. 1975. Borings as trace fossils, and the processes of marine bioerosion, p. 181228. In Frey, R.W. (ed.), The Study of Trace Fossils. Springer-Verlag, New York.CrossRefGoogle Scholar
Whittington, H.B. 1980. Exoskeleton, moult stage, appendage morphology, and habits of the Middle Cambrian trilobite Olenoides serratus . Palaeontology 23:171204.Google Scholar
Wolberg, D.L., West, S., Hall, J.P., and Zidek, J. 1988. Probable caddisfly (Trichoptera: Insecta) larval cases from the Fruitland Formation (Campanian-Maastrichtian) of the Fossil Forest, San Juan County, New Mexico. New Mexico Bureau of Mines and Mineral Resources Bulletin, 122:2931.Google Scholar
Woodin, S.A. 1983. Biotic interactions in Recent marine sedimentary environments, p. 138. In Tevesz, M.J.S. and McCall, P.L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press, New York.Google Scholar
Wootten, R.J. 1983. The historical ecology of aquatic insects: an overview. Palaeogeography, Palaeoclimatology, Palaeoecology, 62:477492.CrossRefGoogle Scholar