Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-11T05:21:21.419Z Has data issue: false hasContentIssue false

Towards a Model To Predict Macular Dichromats' Naming Errors: Effects of CIE Saturation and Dichromatism Type

Published online by Cambridge University Press:  10 April 2014

Julio Lillo*
Affiliation:
Complutense University of Madrid
Isaac Vitini
Affiliation:
Complutense University of Madrid
Aurora Caballero
Affiliation:
Complutense University of Madrid
Humberto Moreira
Affiliation:
Complutense University of Madrid
*
Address correspondence to: Julio Lillo Jover, Dpto. Psicología Diferencial y del Trabajo. Facultad de Psicología.Universidad Complutense de Madrid. Campus de Somosaguas. 28023 Madrid (Spain). Fax: 91-3943189. E-mail: julillo@psi.ucm.es

Abstract

Thirty macular dichromat children (12 protanopes + 18 deuteranopes) and 29 controls, between 5 and 9 years old, participated in a monolexemic denomination task. Their clinical status was determined after a repeated application of a chromatic test set (Ishihara, CUCVT, and TIDA). The stimuli to be named were 12 tiles from the Color-Aid set belonging to the green, blue, and purple basic categories. Results showed that: (a) Dichromats made more naming errors when low saturation stimuli were used; (b) protanopes made more errors that deuteranopes; and (c) pseudoisochromatic lines predicted accurately the type of most frequent naming errors but they underestimated macular dichromats' functional capacity to name colors. Results are consistent with a model of macular dichromats' vision that hypothesizes a residual third type of cone in the periphery of the retina. Implications of this fact for everyday use of colors by macular dichromats' and for the validity of standard clinical diagnoses are discussed.

Treinta niños dicromáticos maculares (12 protanopes + 18 deuteranopes) y 29 controles, con edades comprendidas entre los 5 y 9 años, participaron en una tarea monolexémica de denominación de colores. Su categoría clínica se estableció partiendo de los resultados obtenidos tras la doble aplicación de una batería de tests cromáticos (Ishihara, CUCVT y TIDA). Los estímulos a nombrar fueron doce muestras del conjunto del Color-Aid, pertenecientes a las categorías básicas verde, azul y morado. Los resultados mostraron que: (a) los dicromáticos tuvieron más errores cuando se utilizaron estímulos de baja saturación; (b) los protanopes cometieron más errores que los deuteranopes; (c) las líneas de pseudoisocromaticidad fueron adecuadas para predecir cuáles fueron los errores de nombramiento más frecuentes, pero fueron menos eficaces de lo esperado a la hora de predecir la capacidad funcional de los dicromáticos maculares en el nombramiento de colores. Los resultados concuerdan con un modelo de la visión de los dicromáticos maculares que asume la existencia en la periferia de un tercer tipo de cono. Se discuten las implicaciones de este hecho para comprender el uso cotidiano que hacen estos observadores de los colores y la validez del procedimiento habitual de diagnóstico clínico.

Type
Articles
Copyright
Copyright © Cambridge University Press 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramov, I., Gordon, J., & Chan, H. (1991). Color appearance across the retina: Effects of stimulus size. Journal of the Optical Society of America, 8, 404414.CrossRefGoogle ScholarPubMed
Alpern, M., & Torii, S. (1968a). The luminosity curve of the protanomalus fovea. Journal of General Physiology, 52, 717737.CrossRefGoogle ScholarPubMed
Alpern, M., & Torii, S. (1968b). The luminosity curve of the deuteranomalous fovea. Journal of General Physiology, 52, 738749.CrossRefGoogle ScholarPubMed
Berlin, B., & Kay, P. (1969). Basic color terms: Their universality and evolution. Berkeley, CA: University of California Press.Google Scholar
Birch, J. (1993). Diagnosis of defective color vision. Oxford, UK: Oxford University Press.Google Scholar
Boynton, R.M., & Scheibner, H.M.O. (1967). On the perception of red by red-blind observers. Acta Chromatic, 1, 205220.Google Scholar
Boynton, R.M., & Olson, C.X. (1987). Locating basic colors in the OSA space. Color Research and Application, 12, 94105.CrossRefGoogle Scholar
Boynton, R.M., & Olson, C.X. (1990). Salience of chromatic basic color terms confirmed by three measures. Vision Research, 30, 13111317.CrossRefGoogle ScholarPubMed
Commission Internationale de l'Eclairage (1931). CIE proceedings 1931. Cambridge, UK: Cambridge University Press.Google Scholar
Corbett, G.G., & Davies, I.R.L. (1997). Establishing basic color terms: Measures and techniques. In Hardin, C.L. & Maffi, L. (Eds.), Color categories in thought and language (pp. 197223). Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
Coren, S., Ward, L., & Enns, J.T. (1994). Sensation and perception (4th ed.). London: Harcourt Brace.Google Scholar
Crawford, T.D. (1982). Defining “basic colour terms.” Anthroplogical Linguistics, 24, 338343.Google Scholar
Davies, I.R.L., & Corbett, G.G. (1994). The basic color terms of Russian. Linguistics, 32, 6589.CrossRefGoogle Scholar
De Marco, P., Pokorny, J., & Smith, V.C. (1992). Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats. Journal of the Optical Society of America, 9, 14651476.CrossRefGoogle ScholarPubMed
Fletcher, R. (1980). The City University Colour Vision Test (2nd ed.). London: Keeler.Google Scholar
Fletcher, R., & Voke, J. (1985). Defective colour vision. Bristol, UK: Adam Hilger.Google Scholar
Fotios, S., & Levermore, G.J. (1997). Perception of electric light sources of different colour properties. Lighting Research and Technology, 29, 161171.CrossRefGoogle Scholar
Frome, F., Piantanida, T., & Kelly, D.H. (1982). Psychophysical evidence for more than two cone types in dichromatic colour blindness. Science, 215, 417419.CrossRefGoogle Scholar
Hård, A., Sivick, L., & Tonnquist, G. (1996). NCS, Natural colour system: From concept to research and applications. Part 1. Colour Research and Application, 21, 180205.3.0.CO;2-O>CrossRefGoogle Scholar
Heath, G.G. (1958). Luminosity curves of normal and dicromatic observers. Science. 128. 775776.CrossRefGoogle ScholarPubMed
Hood, D.C., & Finkelstein, M.A. (1986). Sensitivity to light. In Boff, K.R., Kaufman, LL., & Thomas, J.P. (Eds.), Handbook of perception and human performance. (Vol. 1, chap. 5, pp. 166). New York: Wiley.Google Scholar
Hunt, R.W.G. (1987). Measuring color. New York: Wiley.Google Scholar
Kaiser, P.K., & Boynton, R.M. (1996). Human color vision (2nd ed.). Washington, DC: Optical Society of America.Google Scholar
Kay, P. & McDaniel, C.K. (1978). The linguistic significance of the meanings of basic colour terms. Language, 54, 610646.CrossRefGoogle Scholar
Kinnear, P.R. (1986). Spectral sensitivity for observers with protanomalous, extreme protanomalous and protanopic colour vision. Ophtalmic and Physiological Optics, 6, 197200.CrossRefGoogle ScholarPubMed
Lillo, J. (1996). Manual del Test de Identificación de Daltonismos (TIDA). Madrid: TEA.Google Scholar
Lillo, J. (2000). Ergonomía: evaluación y diseño del entorno visible. Madrid: Alianza.Google Scholar
Lillo, J., Collado, J., Martín, J., & García, Y. (1999). A fast and easy psycho-physical procedure to adjust luminance and achromatic contrast in conventional video display terminals (VDT). In Harris, D. (Ed.), Engineering psychology and cognitive ergonomics: Vol. 4. Job design, product design and human-computer interaction (pp. 131140). Ashgate, UK: Aldershot.Google Scholar
Lillo, J., Collado, J., Vitini, I., Ponte, E., & Sánchez, M.P. (1998). Detección de daltonismos tipo protán utilizando un monitor de televisión convencional. Psicothema, 10, 447457.Google Scholar
Lillo, J., Davies, I.R.L., Vitini, I., & Caballero, A. (1999). Macular dichromats' chromatic space: Basic categories and partial asymmetries. Perception, 28, 66.Google Scholar
Lillo, J., Davies, I., Collado, J., Ponte, E., & Vitini, I. (in press). Colour naming by colour-blind children. Journal of Child Language.Google Scholar
Lynes, J.A. (1996). Daylight and photometric anomalies. Lighting Research and Technology, 28, 6367.CrossRefGoogle Scholar
Montag, E.D. (1994). Surface color naming in dichromats. Vision Research, 34, 21372151.CrossRefGoogle ScholarPubMed
Montag, E.D., & Boynton, R.M. (1987). Rod influence in dichromatic surface color perception. Vision Research, 27, 21532162.CrossRefGoogle ScholarPubMed
Nagy, A.L. (1980). Large-field color matches of dichromats. Journal of the Optical Society of America, 70, 778784.CrossRefGoogle Scholar
Nagy, A.L., & Boynton, R.M. (1979). Large-field color naming of dichromats with rods bleached. Journal of the Optical Society of America, 69, 12591265.CrossRefGoogle ScholarPubMed
Nagy, A.L., & Doyal, J.A. (1993). Red-green color discrimination as a function of stimulus field size in peripheral vision. Journal of the Optical Society of America, 10, 11471156.CrossRefGoogle ScholarPubMed
Neitz, M., & Neitz, J. (1998). Molecular genetics and the biological basis of colour vision. In Backhaus, W., Kliegl, R., & Werner, J.S. (Eds.), Colour vision: Perspectives from different disciplines (pp. 301318). Berlin: Gruyter.Google Scholar
Paramei, G.V., Bimler, D.L., & Cavonious, R. (1998). Effect of luminance on color perception of protanopes. Vision Research, 38, 33973401.CrossRefGoogle ScholarPubMed
Pitt, F.H.G. (1935). Characteristics of dichromatic vision, with an appendix on anomalous trichromatic vision. Great Britain Medical Research Council Special Report Series. N° 200.Google Scholar
Rigden, C. (1999). ‘The eye of the beholder’ - Designing for colour-blind users. British Telecommunications Engineering, 17, 26.Google Scholar
Scheibner, H.M.O., & Boynton, R.M. (1968). Residual red-green discrimination in dichromats. Journal of the Optical Society of America, 58, 11511158.CrossRefGoogle ScholarPubMed
Smith, V.C., & Pokorny, J. (1975). Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Research, 15, 161171.CrossRefGoogle Scholar
Smith, V.C., & Pokorny, J. (1977). Large-field trichromacy in protanopes and deuteranopes. Journal of the Optical Society of America, 67, 213220.CrossRefGoogle ScholarPubMed
Travis, D. (1991). Effective color displays: Theory and practice. London: Academic Press.Google Scholar
Sturges, J., & Whitfield, A. (1997). Salient features of Munsell colour space as a function of monolexemic naming and response latencies. Vision Research, 37, 307313.CrossRefGoogle ScholarPubMed
Wyszecki, G. (1986). Color Appearance. In Boff, K.R., Kaufman, LL., & Thomas, J.P. (Eds.), Handbook of perception and human performance. (Vol. 1, chap. 9, pp. 157). New York: Wiley.Google Scholar