Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-22T11:05:43.133Z Has data issue: false hasContentIssue false

Basic Color Terms Use by Aged Observers: Lens Aging and Perceptual Compensation

Published online by Cambridge University Press:  10 January 2013

Julio Lillo*
Affiliation:
Universidad Complutense de Madrid (Spain)
Humberto Moreira
Affiliation:
Universidad Complutense de Madrid (Spain)
Leticia Pérez del Tío
Affiliation:
Universidad Complutense de Madrid (Spain)
Leticia Álvaro
Affiliation:
Universidad Complutense de Madrid (Spain)
María del Carmen Durán
Affiliation:
Universidad Complutense de Madrid (Spain)
*
Correspondence concerning this article should be addressed to Julio Lillo. Facultad de Psicología. Campus de Somosaguas. 28223 Madrid (Spain). Phone:+34-913943198. E-mail: julillo@psi.ucm.es

Abstract

Basic Color Terms (BCTs) use by aged people (normal and tritanomalous) was analysed on the basis of the results provided by two visual search tasks. One task (mapping) required participants to select every stimulus that could be included in a specific BCT. Another task (best representative) required participants to select the stimulus that most accurately identified a BCT. Both tasks' results were used for two different goals. First (descriptive level), to specify the main differences between aged and young people in their use of BCTs (dimensions provided by multidimensional scaling, confusions between specific pairs of BCTs). Second (explicative level), to compare the accuracy of three models for predicting aged people's performance. Model A (filtering without compensation) assumed that aged people must use BCTs as young people do when responding to stimuli similar to the ones produced by lens aging. On the contrary, model B (filtering with compensation) assumed that lens aging effects were partially compensated by a von Kries-type mechanism (white normalisation). Finally, model C (tritan lines) assumed that ocular aging only influences S cone responses (tritan responses). Results showed that model B was the most accurate with the percentage of explained variance over 90% for both aged groups.

Los resultados proporcionados por dos tareas de búsqueda visual sirvieron para analizar el uso de los términos básicos de color (TBCs) en personas mayores (normales y tritanómalas).Una tarea (delimitación) requirió que los participantes seleccionasen todos los estímulos que podían incluirse en cada TBC concreto. La otra tarea (mejor representante) requirió que seleccionasen el estímulo que mejor identificaba a un TBC. Los resultados de ambas tareas se utilizaron con dos finalidades diferentes. La primera (nivel descriptivo) fue la de especificar las diferencias principales entre las personas mayores y jóvenes en su forma de usar los TBCs (dimensiones proporcionadas por el escalamiento multidimensional, confusiones entre pares específicos de TBCs). La segunda (nivel explicativo) fue la de comparar la adecuación de tres modelos para predecir el desempeño de las personas mayores. El modelo A (filtrado sin compensación) asumió que las personas mayores debían usar los TBCs como lo hacen las personas jóvenes al responder a estímulos similares a los que produce el envejecimiento del cristalino. Por el contrario, el modelo B (filtrado con compensación) asumió que los efectos del envejecimiento del cristalino fueron parcialmente compensados por un mecanismo tipo von Kries (normalización al blanco). Finalmente el modelo C (líneas tritán) asumió que el envejecimiento del cristalino sólo influye en las respuestas de los conos S (respuestas tritán). Los resultados mostraron que el modelo B fue el más adecuado, ya que llegó a explicar más del 90% de la varianza en ambos grupos de personas mayores.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berlin, B., & Kay, P. (1969). Basic color terms: Their universality and evolution. Berkeley, CA: University of California Press.Google Scholar
Birch, J. (2001). Diagnosis of defective color vision. Oxford, England: Butterworth-Heinemann.Google Scholar
Bonnardel, V. (2006). Color naming and categorization in inherited color vision deficiencies. Visual Neuroscience, 23, 637643. http://dx.doi.org/10.1017/S0952523806233558CrossRefGoogle ScholarPubMed
Boynton, R. M., & Olson, C. X. (1987). Locating basic colors in the OSAspace. Color Research and Application, 12, 94105. http://dx.doi.org/10.1002/col.5080120209CrossRefGoogle Scholar
Delahunt, P., Webster, M. A., Ma, L., & Werner, J. S. (2004). Color appearance changes after cataract surgery reveal a long-term chromatic adaptation mechanism. Visual Neuroscience, 21, 301307.CrossRefGoogle Scholar
Fletcher, R J. (1980). The City University Color Vision Test (2nd Ed.). London, England: Keeler.Google Scholar
Foster, D. H., Nascimento, S. M. C., Craven, B. J., Linnell, K. J., Cornelissen, F. W., & Brenner, E. (1997). Four issues concerning colour constancy and relational colour constancy. Vision Research, 37, 13411345. http://dx.doi.org/10.1016/S0042-6989(96)00285-4CrossRefGoogle ScholarPubMed
Franklin, A., Clifford, A., Williamson, E., & Davies, I. R. L. (2005). Color term knowledge does not affect categorical perception of color in toddlers. Journal of Experimental Child Psychology, 90, 114141. http://dx.doi.org/10.1016/j.jecp.2004.10.001CrossRefGoogle Scholar
Hardy, J. L., Frederick, C. M., Kay, P., & Werner, J. S. (2005). Color naming, lens aging, and grue: What the optics of the aging eye can teach us about color language. Psychological Science, 16, 321327. http://dx.doi.org/10.1111/j.0956-7976.2005.01534.xCrossRefGoogle ScholarPubMed
Hunt, R. W. G., & Pointer, M. R. (2011). Measuring colour (4th Ed.). Chichester, England: John Wiley & Sons, Ltd. http://dx.doi.org/10.1002/9781119975595CrossRefGoogle Scholar
Ishihara, M. D. (1996). Ishihara's tests for colour-deficiency: 24 Plates Edition. Tokyo, Japan: Kanehara & Co., Ltd.Google Scholar
Jameson, K.A. (2005a). Culture and cognition: What is universal about the representation of color experience? Journal of Cognition and Culture, 5, 293348. http://dx.doi.org/10.1163/156853705774648527CrossRefGoogle Scholar
Jameson, K.A. (2005b). Why GRUE?An interpoint-distance model analysis of composite color categories. Cross-Cultural Research 39, 159204. http://dx.doi.org/10.1177/1069397104273766CrossRefGoogle Scholar
Kaiser, P. K., & Boynton, R. M. (1996). Human color vision (2nd Ed.). Washington, DC: Optical Society of America.Google Scholar
Kay, P., Berlin, B., Maffi, L., & Merrifield, W. R. (1997). Color naming across languages. In Hardin, C. L. & Maffi, L. (Eds.), Color categories in thought and language (pp. 2156). Cambridge, England: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511519819.002CrossRefGoogle Scholar
Kay, P., Berlin, B., Maffi, L., Merrifield, W. R., & Cook, R. (2010). World color survey. Stanford, CA: Center for the Study of Language and Information (CSLI).Google Scholar
Knoblauch, K., Saunders, F., Kusuda, M., Hynes, R., Podgor, M., Higgins, K. E., & de Monasterio, F. M. (1987). Age and iluminance effects in the Farnsworth-Munsell 100-hue Test. Applied Optics, 26, 14411448. http://dx.doi.org/10.1364/AO.26.001441CrossRefGoogle Scholar
Kraft, J. M., & Werner, J. S. (1999a). Aging and the saturation of colors. 1. Colorimetric purity discrimination. Journal of the Optical Society of America, A, 16, 223230. http://dx.doi.org/10.1364/JOSAA.16.000223CrossRefGoogle ScholarPubMed
Kraft, J. M., & Werner, J. S. (1999b). Aging and the saturation of colors. 2. Scaling of color appearance. Journal of the Optical Society of America, A, 16, 231235. http://dx.doi.org/10.1364/JOSAA.16.000231CrossRefGoogle ScholarPubMed
Kraft, J. M., & Werner, J. S. (1994). Spectral efficiency across the life span: Flicker photometry and brightness matching. Journal of the Optical Society of America, A, 11, 12131221. http://dx.doi.org/10.1364/JOSAA.11.001213CrossRefGoogle ScholarPubMed
Lanthony, P. (1985). Album tritan. Paris, France: Luneau Ophtalmologie.Google Scholar
Lillo, J., Davies, I., Collado, J., Ponte, E., & Vitini, I. (2001). Colour naming by colour blind children. Anuario de Psicología, 32, 524.Google Scholar
Lillo, J., & Moreira, H. (2005). Relative luminance and figure-background segmentation problems: Using AMLA to avoid non-discernible stimulus pairs in common and color blind observers. Psicológica, 26, 189207.Google Scholar
Lillo, J., Moreira, H., Álvaro, L., & Davies, I. (2012). Use of Basic Color Terms by red-green dichromats: 1. General description. Color Research and Application. Manuscript submitted for publication.Google Scholar
Lillo, J., Moreira, H., Vitini, I., & Martín, J. (2007). Locating basic Spanish color categories in CIE L*u*v* Space: Identification, lightness segregation and correspondence with English equivalents. Psicológica, 28, 2154.Google Scholar
Lindsey, D. T., & Brown, A. M. (2002). Color naming and the phototoxic effects of sunlight on the eye. Psychological Science, 13, 506512. http://dx.doi.org/10.1111/1467-9280.00489CrossRefGoogle ScholarPubMed
Lindsey, D. T., & Brown, A. M. (2009). World color survey color naming reveals universal motifs and their within-language diversity. Proceedings of the National Academy of Sciences of the United States of America of the USA, 106, 1978519790.Google ScholarPubMed
Lin, H., Luo, M. R., MacDonald, L. W., & Tarrant, A. W. S. (2001a). A cross-cultural colour-naming study. Part I: Using an unconstrained method. Color Research and Application, 26, 4060. http://dx.doi.org/10.1002/1520-6378(200102)26:1<40::AID-COL5>3.0.CO;2-X3.0.CO;2-X>CrossRefGoogle Scholar
Lin, H., Luo, M. R., MacDonald, L. W., & Tarrant, A. W. S. (2001b). A cross-cultural colour-naming study. Part II: Using a constrained method. Color Research and Application, 26, 193208. http://dx.doi.org/10.1002/col.1017.absCrossRefGoogle Scholar
Mellerio, J. (1987). Yellowing of the human lens: Nuclear and cortical contributions. Vision Research, 27, 15811587. http://dx.doi.org/10.1016/0042-6989(87)90166-0CrossRefGoogle ScholarPubMed
Moreira, H. (2010). Uso de términos de color básicos en daltónicos dicrómatas y personas de edad avanzada [Basic color terms use by red-green dichromats and by aged people]. (Doctoral thesis). Universidad Complutense, Madrid, España.Google Scholar
Moreira, H., Lillo, J., Álvaro, L., & Davies, I. (2012). Use of basic color terms by red-green dichromats: 2. Models. Color Research and Application. Manuscript submitted for publication.Google Scholar
Neitz, J., Carroll, J., Yamauchi, Y., Neitz, M., & Williams, D. R. (2002). Color perception is mediated by a plastic neural mechanism that is adjustable in adults. Neuron, 35, 783792. http://dx.doi.org/10.1016/S0896-6273(02)00818-8CrossRefGoogle ScholarPubMed
Norren, D. V., & Vos, J. J. (1974). Spectral transmission of the human ocular media. Vision Research, 14, 12371244. http://dx.doi.org/10.1016/0042-6989(74)90222-3CrossRefGoogle ScholarPubMed
Obama, T., Ikeda, M., Sagawa, K., & Shinoda, H. (2005). Range of similar colours with and without cataract experiencing goggles. In Nieves, J. L. & Hernandez-Andrés, J. (Eds.), Proceedings book of AIC Colour 05 (pp. 1316). Granada, España: Comité Español del Color.Google Scholar
Pokorny, J., Smith, V., & Lutze, M. (1987). Aging of the human lens. Applied Optics, 26, 14371440. http://dx.doi.org/10.1364/AO.26.001437CrossRefGoogle ScholarPubMed
Regan, B. C., Reffin, J. P., & Mollon, J. D. (1994). Luminance noise and the rapid determination of discrimination ellipses in colour deficiency. Vision Research. 34, 12791299. http://dx.doi.org/10.1016/0042-6989(94)90203-8CrossRefGoogle ScholarPubMed
Regier, T. Kay, P., & Khetarpal, N. (2009). Color naming and the shape of color space. Language, 85, 884892.CrossRefGoogle Scholar
Roberson, D., Davidoff, J., Davies, I. R. L., & Shapiro, L. (2005). Color categories in Himba: Evidence for the cultural relativity hypothesis. Cognitive Psychology, 50, 378411. http://dx.doi.org/10.1016/j.cogpsych.2004.10.001CrossRefGoogle Scholar
Sagawa, K., & Takahashi, Y. (2001). Spectral luminous efficiency as a function of age. Journal of the Optical Society of America A, 18, 26592667. http://dx.doi.org/10.1364/JOSAA.18.002659CrossRefGoogle ScholarPubMed
Schefrin, B. E., & Werner, J. S. (1990). Loci of spectral unique hues throughout the life span. Journal of the Optical Society of America A, 7, 305311. http://dx.doi.org/10.1364/JOSAA.7.000305CrossRefGoogle ScholarPubMed
Schieber, F. (2006). Vision and aging. In Birren, J. E. & Schaie, K. Warner (Eds.), Handbook of the psychology of aging (6th Ed., pp. 129161). San Diego, USA: Elsevier Academic Press. http://dx.doi.org/10.1016/B978-012101264-9/50010-0CrossRefGoogle Scholar
Schirillo, J. A. (2001). Tutorial on the importance of color in language and culture. Color Research and Application, 26, 179192. http://dx.doi.org/10.1002/col.1016CrossRefGoogle Scholar
Scandinavian Color Institute (1997). NCS Index Edition 2. Stockholm, Sweden: Scandinavian Color Institute.Google Scholar
Stockman, A., & Sharpe, L. T. (2000). Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype. Vision Research, 40, 17111737. http://dx.doi.org/10.1016/S0042-6989(00)00021-3CrossRefGoogle ScholarPubMed
Sturges, J., & Whitfield, T. W. A. (1995). Locating basic colours in the Munsell space. Color Research and Application, 20, 364376. http://dx.doi.org/10.1002/col.5080200605CrossRefGoogle Scholar
Vanderheiden, G. C. (2006). Design for people with functional limitations. In Salvendy, Gavriel (Ed.), Handbook of human factors and ergonomics (3rd Ed., pp. 13871417). New York, NY: Wiley. http://dx.doi.org/10.1002/0470048204.ch53Google Scholar
Verriest, G. (1963). Further studies on acquired deficiency of color discrimination. Journal of the Optical Society of America A, 53, 185197. http://dx.doi.org/10.1364/JOSA.53.000185CrossRefGoogle ScholarPubMed
Weale, R.A. (1986). Aging and vision. Vision Research, 26, 15071512. http://dx.doi.org/10.1016/0042-6989(86)90170-7CrossRefGoogle ScholarPubMed
Weale, R. A. (1988). Age and the transmittance of the human crystalline lens. Journal of physiology, 395, 577587.CrossRefGoogle ScholarPubMed
Webster, M.A., Halen, K., Meyers, A. J., Winkler, P., & Werner, J. S. (2010). Color appearance and compensation in the near periphery. Proceedings of the Royal Society B: Biological Sciences, 277, 18171825. http://dx.doi.org/10.1098/rspb.2009.1832CrossRefGoogle ScholarPubMed
Werner, J. S., & Schefrin, B. E. (1993). Loci of achromatic points throughout the life span. Journal of the Optical Society of America A, 10, 15091516. http://dx.doi.org/10.1364/JOSAA.10.001509CrossRefGoogle ScholarPubMed
Winn, B., Whitaker, D., Elliott, D. B., & Phillips, N. J. (1994). Factors affecting light-adapted pupil size in normal human subjects. Investigative Ophthalmology and Visual Science, 35, 11321137.Google ScholarPubMed
Wuerger, S., Xiao, K., Fu, C., & Karatzas, D. (2010). Colour-opponent mechanisms are not affected by age-related chromatic sensitivity changes. Ophthalmic and Physiological Optics, 30, 653659. http://dx.doi.org/10.1111/j.1475-1313.2010.00744.xCrossRefGoogle Scholar