Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-16T20:45:00.677Z Has data issue: false hasContentIssue false

Black-Hole Systems: Optical Spectroscopy and IR Photometry

Published online by Cambridge University Press:  25 May 2016

P.A. Charles*
Affiliation:
Oxford University, Nuclear & Astrophysics Laboratory, Keble Road, Oxford 0X1 3RH, United Kingdom

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The X-ray transient systems have provided the first opportunities for detailed studies of the mass losing star in low-mass X-ray binaries. During X-ray quiescence the cool star is the dominant light source in the red and near-IR. Optical spectroscopy yields the mass function (itself a lower limit to the compact-object mass), the rotational broadening leads to the mass ratio, q (assuming only that the star fills its Roche lobe), and the IR ellipsoidal light curve gives the system inclination (for high q). In such cases, a complete solution to the system parameters is possible, and this has been performed for A 0620-00 (V616 Mon) and GS 2023+338 (V404 Cyg), leading to the first accurate black-hole masses (which are in the range 10–12 M).

Type
5 X-ray Binaries
Copyright
Copyright © Kluwer 1996 

References

Bailyn, C.D. 1992, ApJ 391, 298.Google Scholar
Casares, J. & Charles, P.A. 1994, MNRAS (in press).Google Scholar
Casares, J., Charles, P.A. & Naylor, T. 1992, Nat 355, 614.Google Scholar
Casares, J. et al. 1995, MNRAS (submitted).Google Scholar
Charles, P.A. et al. 1991, MNRAS 249, 567.Google Scholar
Charles, P.A. et al. 1994, in The Evolution of X-ray Binaries , Holt, S.S. & Day, C.S. (Eds.), AIP Conference Proc. Vol. 308, p. 371.Google Scholar
Chevalier, C. & Ilovaisky, S.A. 1993, IAU Circular 5692.Google Scholar
Harlaftis, E.T. et al. 1994, in The Evolution of X-ray Binaries , Holt, S.S. & Day, C.S. (Eds.), AIP Conference Proc. Vol. 308, p. 91.Google Scholar
Kato, T., Mineshige, S. & Hirata, R. 1992, IAU Circ. 5676.Google Scholar
Kato, T., Mineshige, S. & Hirata, R. 1993, IAU Circ. 5704.Google Scholar
King, A.R. 1993 MNRAS 260, L5.Google Scholar
Marsh, T.R., Robinson, E.L. & Wood, J.H. 1994, MNRAS 266, 137.Google Scholar
Martín, E.L. et al. 1992, Nat 358, 129.Google Scholar
Martín, E.L. et al. 1994, ApJ (in press).Google Scholar
McClintock, J.E. 1986, in Physics of Accretion onto Compact Objects , Mason, K.O., Watson, M.G. & White, N.E. (Eds.), Lecture Notes in Physics Vol. 266 (Springer), p. 211.Google Scholar
McClintock, J.E. 1991, Ann. N.Y. Acad. Sci. 647, 495.Google Scholar
McClintock, J.E. & Remillard, R.A. 1986, ApJ 308, 110.CrossRefGoogle Scholar
McClintock, J.E. & Remillard, R.A. 1990, ApJ 350, 386.Google Scholar
Orosz, J.A. et al. 1994, ApJ (in press).Google Scholar
Remillard, R.A., McClintock, J.E. & Bailyn, C.D. 1992, ApJ 399, L145.Google Scholar
Shahbaz, T., Naylor, T. & Charles, P.A. 1993, MNRAS 265, 655.Google Scholar
Shahbaz, T., Naylor, T. & Charles, P.A. 1994a, MNRAS 268, 756.Google Scholar
Shahbaz, T. et al. 1994b, MNRAS (in press).Google Scholar
Tanaka, Y. & Lewin, W.H.G. 1995, in X-ray Binaries , Lewin, W.H.G., van Paradijs, J. & van den Heuvel, E.P.J. (Eds.), Cambridge Univ. Press, (in press).Google Scholar
Thorsett, S.E. et al. 1993, ApJ 405, L29.Google Scholar
van Paradijs, J. & McClintock, J.E. 1995, in X-ray Binaries , Lewin, W.H.G., van Paradijs, J. & van den Heuvel, E.P.J. (Eds.), Cambridge Univ. Press, (in press).Google Scholar
Verbunt, F., van den Heuvel, E.P.J. 1995, in X-ray Binaries , Lewin, W.H.G., van Paradijs, J. & van den Heuvel, E.P.J. (Eds.), Cambridge Univ. Press, (in press).Google Scholar
Wade, R.A. & Horne, K. 1988, ApJ 324, 411.Google Scholar
White, N.E. 1994, in The Evolution of X-ray Binaries , AIP Conference Proc. 308, 371.Google Scholar
Zhao, P. et al. 1994, IAU Circ. 6072.Google Scholar