Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T15:07:38.690Z Has data issue: false hasContentIssue false

CO and the Multiphase ISM

Published online by Cambridge University Press:  25 May 2016

Christopher F. Mckee*
Affiliation:
Departments of Physics and Astronomy, University of California, Berkeley CA 94720

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

CO observations indicate that molecular clouds have a complex multiphase structure, and this is compared with the multiphase structure of the diffuse interstellar medium. The trace ionization within the molecular gas is governed primarily by UV photoionization. Magnetic fields contribute a significantly larger fraction of the pressure in molecular clouds than in the diffuse interstellar medium. Observations suggest that the total Alfvén Mach number, mAtot, of the turbulence in the diffuse ISM exceeds unity; Zeeman observations are consistent with mAtot ≲ 1 in molecular clouds, but more data are needed to verify this. Most molecular clouds are self-gravitating, and they can be modeled as multi-pressure polytropes with thermal, magnetic, and wave pressure. The pressure and density within self-gravitating clouds is regulated by the pressure in the surrounding diffuse ISM.

Type
Molecular Clouds in the Milky Way
Copyright
Copyright © Kluwer 1997 

References

Arons, J., & Max, C. E. 1975, ApJ, 196, L77.Google Scholar
Bertoldi, F., and McKee, C.F. 1992, ApJ, 395, 140.Google Scholar
Bertoldi, F., and McKee, C.F. 1996, to be submitted to ApJ.Google Scholar
Blitz, L. 1991, in The Physics of Star Formation and Early Stellar Evolution , eds. Lada, C.J. and Kylafis, N.D. (Dordrecht: Kluwer), p.3.Google Scholar
Blitz, L., & Shu, F. H. 1980, ApJ, 238, 148.Google Scholar
Bonnor, W. B. 1956, MNRAS, 116, 351.Google Scholar
Boulares, A., & Cox, D. P. 1990, ApJ, 365, 544.Google Scholar
Caselli, P., & Myers, P. C. 1995, ApJ, 446, 665.Google Scholar
Chieze, J. P. 1987, A&A, 171, 225.Google Scholar
Crutcher, R. M. 1993, ApJ, 407, 175.Google Scholar
Dickman, R. L., & Clemens, D. P. 1983, ApJ, 271, 143.Google Scholar
Ebert, R. 1955, Z. Astrophys. , 37, 222.Google Scholar
Elmegreen, B. G. 1989, ApJ, 338, 178.Google Scholar
Elmegreen, B. G. 1991, ApJ, 378, 139.Google Scholar
Falgarone, E., & Puget, J. L. 1986, A&A, 162, 235.Google Scholar
Falgarone, E., Phillips, T. G., & Walker, C. K. 1991, ApJ, 378, 186.Google Scholar
Field, G. B., Goldsmith, D. W., & Habing, H. J. 1969, ApJ, 155, L149.Google Scholar
Fuller, G. A., & Myers, P. C. 1992, ApJ, 384, 523.Google Scholar
Heiles, C. 1996, in Polarimetry of the Interstellar Medium , ed. Roberge, W. G. & Whittet, D. C. B. (San Francisco: ASP), in press.Google Scholar
Heiles, C., Goodman, A., McKee, C. F., & Zweibel, E. 1993, in Protostars and Planets III , eds. Levy, E. and Lunine, J. (Tucson: University of Arizona Press), p.279.Google Scholar
Holliman, J. H., & McKee, C. F. 1996, ApJ, to be submitted (HM).Google Scholar
Jenkins, E. B., Jura, M., & Loewenstein, M. 1983, ApJ, 270, 88.CrossRefGoogle Scholar
Jura, M. 1975, ApJ, 197, 581.Google Scholar
Larson, R. B. 1981, MNRAS, 194, 809.Google Scholar
Lockman, F. J., & Gehman, C. S. 1991, ApJ, 382, 182.Google Scholar
Maloney, P. 1988, ApJ, 334, 761.Google Scholar
McKee, C. F. 1989, ApJ, 345, 782.Google Scholar
McKee, C. F. 1990, in The Evolution of the Interstellar Medium , ed. Blitz, L. (San Francisco: ASP), p. 3.Google Scholar
McKee, C. F. 1995, in The Physics of the Interstellar Medium and Intergalactic Medium , ed. Ferrara, A., McKee, C. F., Heiles, C., & Shapiro, P. (San Francisco: ASP), p. 292.Google Scholar
McKee, C. F., & Ostriker, J. P. 1977, ApJ, 218, 148.Google Scholar
McKee, C. F., & Zweibel, E. G. 1995, ApJ, 440, 686.CrossRefGoogle Scholar
Mouschovias, T., & Spitzer, L. 1976, ApJ, 210, 326.Google Scholar
Myers, P. C., & Fuller, G. A. 1992, ApJ, 392, 631.Google Scholar
Myers, P. C., & Goodman, A. A. 1988, ApJ, 326, L27.Google Scholar
Norman, C. A., & Silk, J., 1980, ApJ, 238, 158.Google Scholar
Ohno, H., & Shibata, S. 1993, MNRAS, 262, 953.Google Scholar
Parker, E. N. 1969, Space Sci. Rev. , 9, 651.Google Scholar
Scoville, N. Z., & Sanders, D. B. 1987, in Interstellar Processes , eds. Hollenbach, D. and Thronson, H. (Dordrecht: Reidel), p.21.Google Scholar
Shu, F. H., Adams, F. C., & Lizano, S. 1987, ARA&A, 25, 23.Google Scholar
Solomon, P. M., Rivolo, A. R., Barrett, J. W., & Yahil, A. 1987, ApJ, 319, 730.Google Scholar
Williams, J. P., deGeus, E. J., & Blitz, L. 1995, ApJ, 428, 693.Google Scholar
Wolfire, M. G., Hollenbach, D. J., McKee, C. F., Tielens, A. G. G. M., & Bakes, E. L. O. 1995, ApJ, 443, 152.Google Scholar
Zuckerman, B., & Palmer, P. 1974, ARA&A, 12, 279.Google Scholar
Zweibel, E. G. 1995, in The Physics of the Interstellar Medium and Intergalactic Medium , ed. Ferrara, A., McKee, C. F., Heiles, C., & Shapiro, P. (San Francisco: ASP), p. 524.Google Scholar
Zweibel, E. G., & McKee, C. F. 1995, ApJ, 439, 779.CrossRefGoogle Scholar