Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-21T08:19:32.178Z Has data issue: false hasContentIssue false

Deceleration Zones in the Winds of WR and P Cygni Type Stars

Published online by Cambridge University Press:  03 August 2017

Tiit Nugis*
Affiliation:
W.Struve Astrophysical Observatory of Tartu 202444 Tõravere Estonia, USSR

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Specific features both of continua and of line spectra of WR and P Cygni type stars can probably be explained if an extensive deceleration zone is proposed to exist in their stellar winds. The outflowing matter is first accelerated near the stellar surface, then follows the deceleration of the flow and after that the final acceleration of the outflowing matter takes place (i.e. the wind has an ADA-structure: acceleration-deceleration-acceleration). Such a structure of the wind probably arises due to the multiscattering of photons in the envelope having two detached shells, which are optically thick in resonance lines (these shells can form if ionization stratification is present in the envelope).

Type
Session V. Mass Loss
Copyright
Copyright © Kluwer 1991 

References

Abbott, D.C. and Lucy, L.B. 1985. Astrophys. J., 288, 679.Google Scholar
Felli, M., Stanga, R., Oliva, E. and Panagia, N., 1985. Astr. Astrophys., 151, 27.Google Scholar
Friend, D.B. and Castor, J.I., 1983. Astrophys. J., 272, 259.Google Scholar
Kolka, I., 1980. ENSV TA Preprint A-4.Google Scholar
Kolka, I., 1983. ENSV TA Toimetised. Füüs. Matem. Vol. 32, 51.Google Scholar
Kuan, P. and Kuhi, L.V., 1975. Astrophys. J., 199, 148.Google Scholar
Kunasz, P. and Van Blerkom, D., 1978. Astrophys. J., 224, 193.CrossRefGoogle Scholar
Lamers, H.J.G.L.M., Korevaar, P. and Cassatella, A., 1985. Astr. Astrophys., 149, 28.Google Scholar
Luud, L. and Sapar, A., 1980. Tartu Astrofüüs. Obs. Teated, No 60, 3.Google Scholar
Nugis, T., 1984. Tartu Astrofüüs. Obs. Publ., 50, 101.Google Scholar
Nugis, T., 1990. Astrofiz., 32, 85.Google Scholar
Nugis, T., Kolka, I. and Luud, L., 1979a. Mass Loss and Evolution of O-Type Stars, IAU Symp. No 87, p.39, eds Conti, P.S. & de Loore, C.W.H., Reidel, Dordrecht, Holland.Google Scholar
Nugis, T., Kolka, I. and Luud, L., 1979b. Tartu Astrofüüs. Obs. Publ., 47, 191.Google Scholar
Oegerle, W.R. and Van Blerkom, D., 1978. Astrophys. J., 224, 193.Google Scholar
Van den Oord, G.H.J., Waters, L.B.F.M., Abbott, D.C., Bieging, J.H. and Churchwell, E., 1985. Radio Stars, p.111, eds Hjellming, R.M. & Gibson, D.M., Reidel, Dordrecht, Holland.Google Scholar
Panagia, N. and Macchetto, F., 1982. Astr. Astrophys., 106, 266.Google Scholar
Waters, L.B.F.H. and Wesselius, P.R., 1986. Astr. Astrophys., 155, 104.Google Scholar