Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-17T17:04:03.023Z Has data issue: false hasContentIssue false

Detached Main-Sequence Binaries: A Laboratory for the Study of Stellar Structure

Published online by Cambridge University Press:  07 August 2017

A. Gimenez*
Affiliation:
Laboratorio de Astrofísica Espacial y Física Fundamental (INTA) Estación de Villafranca, Apartado 50727. 28080 Madrid, Spain

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Our knowledge of the evolutionary processes taking place in interacting binary stars is based primarily in our understanding of the stellar structure and evolution of single stars. The determination of absolute dimensions in close doble-lined eclipsing binaries, with well-detached components, is the best empirical approach available into stellar structure.

Important physical parameters and processes can be studied in some detail within the framework of detached main-sequence binaries, e.g., initial chemical composition, the mixing-length ratio, the relevance of convective overshooting, interactions between matter and radiation in the stellar interior, the concentration of mass towards the center of the stars or the response of stellar envelopes to tidal influences by an external gravitational potential.

A combination of observational results from photometry and spectroscopy are used to obtain relevant stellar parameters: absolute dimensions, ages, chemical composition, apsidal motion rate, degree of synchronization and circularization, etc., and a comparison with theoretical models allow us to derive some information about the above mentioned physical mechanisms.

Type
Invited Papers
Copyright
Copyright © Kluwer 1992 

References

Andersen, J. (1991), Astron. Astrophys. Rev., preprint.Google Scholar
Andersen, J., Clausen, J.V., Gustafsson, B., Nordström, B., VandenBerg, D.A. (1988), Astron. Astrophys., 196, 128.Google Scholar
Andersen, J., Clausen, J.V., Jorgensen, H.E., Nordström, B. (1984), in Observational Tests of the Stellar Evolution Theory (IAU Symp. No. 105), eds. Maeder, A. & Renzini, A. Reidel, Dordrecht, p. 397.Google Scholar
Andersen, J., Clausen, J.V., Magain, P. (1989), Astron. Astrophys., 211, 346.Google Scholar
Andersen, J., Clausen, J.V., Nordström, B. (1980), in Close Binary Stars: Observations and Interpretation (IAU Symp. No. 88), eds. Plavec, M.J., Popper, D.M. & Ulrich, R.K. Reidel, Dordrecht, p. 81.Google Scholar
Andersen, J., Clausen, J.V., Nordström, B., Tomkin, J., Mayor, M. (1991), Astron. Astrophys., 246, 99.Google Scholar
Andersen, J., Nordström, B., Clausen, J.V. (1990), Astrophys. J., 363, L33.Google Scholar
Bell, S.A., Hill, G., Hilditch, R.W., Clausen, J.V., Reynolds, A.P., Giménez, A. (1991), Mon. Not. R. Astron. Soc., 250, 119.Google Scholar
Canuto, V.M., Mazzitelli, I. (1991), Astrophys. J., 370, 295.Google Scholar
Christensen-Dalsgaard, J. (1988), in Seismology of the Sun & Sun-like Stars , ESA Publication SP-286, p. 431.Google Scholar
Claret, A., Giménez, A. (1989), Astron. Astrophys. Suppl., 81, 1.Google Scholar
Claret, A., Giménez, A. (1991a), Astron. Astrophys. Suppl., 87, 507.Google Scholar
Claret, A., Giménez, A. (1991b), Astron. Astrophys., 244, 319.Google Scholar
Claret, A., Giménez, A. (1991c), this volume.Google Scholar
Clausen, J.V. (1991), Astron. Astrophys., 246, 397.Google Scholar
Clausen, J.V., Giménez, A. (1987), Proceedings of the 10th Europ. Reg. Astron. Meeting of the IAU, ed. Palous, J. Praha, Vol. 4, p. 185 Google Scholar
Clausen, J.V., Giménez, A. (1991), Astron. Astrophys., 241, 98.Google Scholar
De Vaucouleurs, G. (1978), Astrophys. J., 223, 730.Google Scholar
Fekel, F.C. (1991), Astron. J., 10, 1489.Google Scholar
Giménez, A., Claret, A. (1991), this volume.Google Scholar
Giménez, A., Clausen, J.V., Andersen, J. (1986), Astron. Astrophys., 160, 310.Google Scholar
Harmanec, P. (1988), Bull. Astron. Inst. Czechosl., 39, 329.Google Scholar
Hejlesen, P.M. (1980), Astron. Astrophys. Suppl., 39, 347.Google Scholar
Iglesias, C.A., Rogers, F.J. (1991), Astrophys. J., 371, 408.Google Scholar
Jensen, K.S., Clausen, J.V., Giménez, A. (1988), Astron. Astrophys. Suppl., 74, 331.Google Scholar
Koch, R.H. (1990), in Active Close Binaries , ed. Ibanoglu, C. Kluwer, Dordrecht.Google Scholar
Maeder, A., Mermilliod, J.C. (1981), Astron. Astrophys., 93, 136.Google Scholar
Maeder, A., Meynet, G. (1989), Astron. Astrophys., 210, 155.Google Scholar
Mazzei, P., Pigatto, L. (1988), Astron. Astrophys., 193, 148.Google Scholar
Niemela, V. (1987), in Luminous Stars and Associations in Galaxies (IAU Symp. No. 116), eds. de Loore, C.W.H., Willis, A.J. & Laskarides, P. Reidel, Dordrecht, p. 85.Google Scholar
Nordström, B. (1989), Astrophys. J., 341, 934.Google Scholar
Nordström, B., Andersen, J. (1991), ESO Messenger, 63, 34.Google Scholar
Popova, M., Kraicheva, Z. (1984), Astrofiz. Issled. Izv. Spets. Astrofiz. Obs., 18, 64.Google Scholar
Popper, D.M. (1980), Ann. Rev. Astron. Astrophys., 18, 115.Google Scholar
Popper, D.M. (1983), Astron. J., 88, 1242.Google Scholar
Popper, D.M. (1987), Astrophys. J., 313, L81.Google Scholar
Popper, D.M. (1988a), Astron. J., 95, 1242.Google Scholar
Popper, D.M. (1988b), Astron. J., 96, 1040.Google Scholar
Popper, D.M. (1989), Astrophys. J. Suppl., 71, 595.Google Scholar
Popper, D.M. (1990), Astron. J., 100, 247.Google Scholar
Popper, D.M., Hill, G. (1991), Astron. J., 101, 600.Google Scholar
Popper, D.M., Ulrich, R.K. (1986), Astrophys. J., 307, L61.Google Scholar
Stothers, R. (1991), Astrophys. J., in press.Google Scholar
Stothers, R., Chin, Ch.-w. (1990), Astrophys. J., 348, L21.Google Scholar
Stothers, R., Chin, Ch.-w. (1991), Astrophys. J., in press.Google Scholar
Watson, R.D., West, S.R.D., Tobin, W., Gilmore, A.C. (1991), this volume.Google Scholar