Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-13T11:21:16.274Z Has data issue: false hasContentIssue false

High-Mass X-ray Binaries: Recent Developments

Published online by Cambridge University Press:  25 May 2016

F. Nagase*
Affiliation:
The Institute of Space and Astronautical Science, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229, Japan

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There are about a dozen extensively investigated high-mass X-ray binaries (HMXBs), including LMC X-4, Cen X-3, 4U 1700-37, SMC X-1, Cyg X-1, and Vela X-1. Bhattacharya & Van den Heuvel (1991) compiled a list of “standard” HMXBs (see table 8 of their review article) and most of them, except for Cyg X-1 and 4U 1700-37, are accreting X-ray pulsars with an early-type or a Be star companion. Cyg X-3 was long considered to be a low-mass X-ray binary (LMXB). It was, however, recently revealed from infrared observations that the companion star has characteristics of a Wolf-Rayet star and it may be a fairly massive helium star (Van Kerkwijk et al. 1992; Van Kerkwijk 1993). I shall review here some recent progress in observational studies of the “standard” HMXBs and Cyg X-3.

Type
5 X-ray Binaries
Copyright
Copyright © Kluwer 1996 

References

Asai, K. et al. 1992, PASJ 44, 633.Google Scholar
Bhattacharya, D. & Van den Heuvel, E.P.J. 1991, Phys. Rep. 203, 1.CrossRefGoogle Scholar
Corbet, R.H.D., Woo, J.W. & Nagase, F. 1993, A&A 276, 52.Google Scholar
Corbet, R.H.D. et al. 1994, ApJ 436, L15.Google Scholar
Deeter, J.E. et al. 1991, ApJ 383, 324.CrossRefGoogle Scholar
Ebisawa, K. et al. 1995, (in preparation).Google Scholar
Hatchett, S. & McCray, R. 1977, ApJ 211, 552.Google Scholar
Hatchett, S., Buff, J. & McCray, R. 1976, ApJ 206, 847.CrossRefGoogle Scholar
Hellier, C. et al. 1990, MNRAS 244, 39P.Google Scholar
Kallman, T.R. & McCray, R. 1982, ApJS 50, 263.CrossRefGoogle Scholar
Kelley, R.L. et al. 1983, ApJ 268, 790.Google Scholar
Kitamoto, S. et al. 1987, PASJ 39, 259.Google Scholar
Kitamoto, S. et al. 1992, ApJ 384, 263.Google Scholar
Kitamoto, S. et al. 1994, PASJ 46, L105.Google Scholar
Kitamoto, S. et al. 1995, (in preparation).Google Scholar
Levine, A. et al. 1991, ApJ 381, 101.Google Scholar
Levine, A. et al. 1993, ApJ 410, 328.CrossRefGoogle Scholar
McCray, R. et al. 1984, ApJ 282, 245.CrossRefGoogle Scholar
Murakami, T. et al. 1983, ApJ 264, 563.Google Scholar
Nagase, F. 1989, PASJ 41, 1.Google Scholar
Nagase, F. 1992, in Frontiers of X-Ray Astronomy , Tanaka, Y. & Koyama, K. (Eds.), Uni. Acad. Press, Inc., Japan, p. 79.Google Scholar
Nagase, F. et al. 1992, ApJ 396, 147.Google Scholar
Nagase, F. et al. 1994, ApJ 436, L1.Google Scholar
Parmar, A.N. et al. 1991, ApJ 366, 253.CrossRefGoogle Scholar
Reynolds, A.P., Bell, S.A. & Hilditch, R.W. 1992, MNRAS 256, 631.CrossRefGoogle Scholar
Van der Klis, M. & Bonnet-Bidaud, J.M. 1981, A&A 95, L5.Google Scholar
Van der Klis, M. & Bonnet-Bidaud, J.M. 1989, A&A 214, 203.Google Scholar
Van der Klis, M. et al. 1993, A&A 279, L21.Google Scholar
Van Kerkwijk, M.H. 1993, A&A 276, L9.Google Scholar
Van Kerkwijk, M.H. et al. 1992, Nat 355, 703.CrossRefGoogle Scholar