Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-19T22:24:27.663Z Has data issue: false hasContentIssue false

Modern Developments of the Meridian Circle (Invited Paper)

Published online by Cambridge University Press:  14 August 2015

Erik Høg*
Affiliation:
Hamburger Sternwarte, F.R. Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The successful improvements of meridian instrumentation during the past twenty years have mainly come through electronic devices and computers being applied for facilitating the data handling and for increasing the accuracy. Photographic recording of the circle and of the star has played an important role here, but has for both tasks gradually lost its attractiveness as direct photometric-electronic methods have become available. At the same time new types of the telescope system have been introduced without convincing results as yet, but this field still holds promises for the near future.

The problems of the refraction, the meridian building, the foundation of the instrument and the site selection have been treated in recent years and these efforts will be doubly repaid when the telescope and micrometers become more nearly perfect. Altogether, it need not be long before a few partly automatic instruments produce observations with a mean error of 0″.15 and a systematic error of 0″.03 at a rate of 300 observations per observing night. In addition the limiting magnitude can be mv = 11 or 12, thus 2 mag. fainter than for visual observations. These goals are conservative – most of them have already sometimes been surpassed – and they should be compared to a present day good visual meridian circle giving a mean error 0″.30, a systematic error 0″.10 and 120 observations per night.

The relative roles of meridian and photographic astrometry must be defined anew in the light of the great improvements of both methods.

Type
Session G: Astrometric Techniques
Copyright
Copyright © Reidel 1974 

References

Adams, A. N.: 1963, Symp. über Automation …, Heidelberg 1963, p. 88.Google Scholar
Atkinson, R. d'E.: 1955, Monthly Notices Roy. Astron. Soc. 115, 427.Google Scholar
Atkinson, R. d'E.: 1961, Roy. Obs. Bull. , No. 34.Google Scholar
De Vegt, Chr.: 1973, this volume, p. 209.Google Scholar
Einicke, O. H., Laustsen, S., and Schnedler Nielsen, H.: 1971, Astron. Astrophys. 10, 8.Google Scholar
Fischer-Treuenfeld, W. F. von: 1968, Dissertation, Hamburg.Google Scholar
Fricke, W.: 1972, Ann. Rev. Astron. Astrophys. 10, 101.Google Scholar
Gauss, F. S.: 1971, Astron. J. 76, 492.Google Scholar
Gliese, W.: 1965, Astron. J. 70, 162.Google Scholar
H⊘g, E.: 1968, Z. Astrophys. 69, 313.Google Scholar
H⊘g, E.: 1970, Astron. Astrophys. 4, 89.Google Scholar
H⊘g, E.: 1971a, Mitt. Astron. G. 30, 148.Google Scholar
H⊘g, E.: 1971b, Astrophys. Space Sci. 11, 22.CrossRefGoogle Scholar
H⊘g, E.: 1972a, Astron. Astrophys. 19, 27.Google Scholar
H⊘g, E.: 1972b, available on request: ‘Design Study of a Multislit Micrometer and a Semi-automatic Meridian Circle’.Google Scholar
H⊘g, E.: 1972c, Mitt. Astron. G. 32, 120.Google Scholar
H⊘g, E.: 1973, Mitt. Astron. G. , in press.Google Scholar
H⊘g, E. and Nikoloff, I.: 1973, this volume, p. 79.Google Scholar
Klock, B. L.: 1970, Trans. IAU XIVA, Report Commission 8 (mimeographed).Google Scholar
Klock, B. L., Geller, R. Z., and Dachs, M. A.: 1970, U.S. Naval Obs. , Reprint No. 107.Google Scholar
Kovalevsky, J.: 1972, Mitt. Astron. G. 31, 49.Google Scholar
Kühne, C.: 1971, Mitt. Astron. G. 30, 109.Google Scholar
Laclare, F.: 1969, Dissertation, Paris.Google Scholar
Laustsen, S.: 1967, Publ. Mind. Medd. Kbh. Obs. , Nr. 190.Google Scholar
Lévy, J.: 1955, Bull. Astron. 20, 35.Google Scholar
Murray, C. A., Tucker, R. H., and Clements, E. D.: 1971, Roy. Obs. Bull. , No. 162.Google Scholar
Naumov, V. A.: 1966, Bull. Astron. Obs. Pulkovo 24, 22.Google Scholar
Orlow, B. A.: 1953, Bull. Astron. Obs. Pulkovo 19, 56.Google Scholar
Pavlov, N. N.: 1956, Trudy 13th Astrometr. Konf. U.S.S.R. , p. 64.Google Scholar
Pavlov, N. N., Afanasjeva, P. M., and Staritsyn, G. V.: 1971, Bull. Astron. Obs. Pulkovo, 2nd Ser. 1 (78), 27.Google Scholar
Pavlov, N. N.: 1963, Trudy 15th Astrom. Konf. U.S.S.R. , p. 265.Google Scholar
Pavlov, N. N.: 1972, Trudy 18th Astrom. Konf. U.S.S.R. , p. 158.Google Scholar
Pinigin, G. I.: 1972, Trudy 18th Astrom. Konf. U.S.S.R. , p. 165.Google Scholar
Podobed, V. V.: 1962, Fundamental Astrometry (English translation 1965).Google Scholar
Requième, Y.: 1973, Astron. Astrophys. 23, 453.Google Scholar
Siedentopf, H.: 1963, Symposium über Automation …, Heidelberg 1963, p. 57.Google Scholar
Strömgren, B.: 1933, VJS der AG 68, 365.Google Scholar
Tucker, R. H.: 1963, Symposium über Automation …, Heidelberg 1963, p. 112.Google Scholar
Van Herk, G. and van Woerkom, A. J. J.: 1961, Astron. J. 66, 87.Google Scholar
Watts, C. B.: 1960, Stars and Stellar Systems 1, 80.Google Scholar
Zverev, M. S.: 1954, Fundamental Astrometry (English translation 1963).Google Scholar
Zverev, M. S., Naumova, A. A., Naumova, V. A., and Torres, K.: 1966, Bull. Astron. Obs. Pulkovo 24, 12.Google Scholar