Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-15T07:21:09.053Z Has data issue: false hasContentIssue false

N-Body Simulations of Elliptical Galaxies

Published online by Cambridge University Press:  04 August 2017

T.S. van Albada*
Affiliation:
Kapteyn Astronomical Institute, P.O. Box 800, 9700 AV Groningen, The Netherlands

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

N-body simulations are a useful tool for constructing equilibrium models of elliptical galaxies and for the exploration of their kinematical properties, in particular the tumbling rate of the figure about some axis and the internal streaming. As yet little is known about these, except that there is a large variety of possible equilibrium models. It is easy to make triaxial systems that tumble about the short axis, with internal streaming aligned with the rotation axis of the figure. Attempts to construct systems with figure rotation and internal streaming in opposite directions have not been successful. Use of current simulation codes for detailed studies of particle orbits is limited to several (about 10) dynamical times due to non-physical fluctuations in the force field.

Type
Invited Reviews
Copyright
Copyright © Reidel 1987 

References

REFERENCES

Aarseth, S.J. and Binney, J.J., 1978. Mon. Not. Roy. Astr. Soc., 185, 227.Google Scholar
Binney, J., 1976. Mon. Not. Roy. Astr. Soc., 177, 19.Google Scholar
Binney, J., 1985. Mon. Not. Roy. Astr. Soc., 212, 767.CrossRefGoogle Scholar
Binney, J. and Spergel, D., 1982. Astrophys. J., 252, 308.Google Scholar
Bontekoe, T.R., 1987. Ph.D. Thesis Groningen University, in preparation.Google Scholar
Davies, R.L. and Birkinshaw, M., 1986. Astrophys. J., 303, L45.Google Scholar
de Zeeuw, T., 1985. Mon. Not. Roy. Astr. Soc., 216, 273.Google Scholar
Goldstein, H., 1980. Classical Mechanics, 2nd ed., p. 210, Addison-Wesley.Google Scholar
Hohl, F., and Zang, T.A., 1979. Astron. J., 84, 585.Google Scholar
McGlynn, T.A., 1984. Astrophys. J., 281, 13.Google Scholar
Merritt, D., 1987. This volume, p. 315.Google Scholar
Miller, R.H., 1978. Astrophys. J., 223, 122.Google Scholar
Miller, R.H. and Smith, B.F., 1979. Astrophys. J., 227, 407.Google Scholar
Miller, R.H. and Smith, B.F., 1980. Astrophys. J., 235, 793.Google Scholar
Norman, C.A., May, A. and van Albada, T.S., 1985. Astrophys. J., 296, 20.Google Scholar
Schwarzschild, M., 1979. Astrophys. J., 232, 236.Google Scholar
Statler, T.S., 1986. Ph.D. Thesis Princeton University.Google Scholar
Stiavelli, M., 1986. Ph.D. Thesis Scuola Normale Superiore, Pisa.Google Scholar
van Albada, T.S., 1982. Mon. Not. Roy. Astr. Soc., 201, 939.Google Scholar
van Albada, T.S., 1986. In: The Use of Supercomputers in Stellar Dynamics, eds. Hut, P. and McMillan, S., Springer Verlag. p. 23.Google Scholar
Vietri, M., 1986. Astrophys. J., 306, 48.CrossRefGoogle Scholar
Villumsen, J.V., 1982. Mon. Not. Roy. Astr. Soc., 199, 171.Google Scholar
White, S.D.M., 1983. Astrophys. J., 274, 53.Google Scholar
White, S.D.M., 1987. This volume, p. 339.Google Scholar
Wilkinson, A. and James, R.A., 1982. Mon. Not. Roy. Astr. Soc., 199, 171.Google Scholar